

CUPLA

INHALT	
Inhalt/Umweltaktivitäten	1 bis 2
Wählen Sie einen geeigneten Cupla für die Aufgabe aus	3
Glossar	4
Anleitung zur Auswahl von Standard-Cuplas von "NITTO KOHKI"	5 bis 13
Semi-Standard Cupla-Serie und Cupla-Zubehör	14
Sonderanfertigungen von Cuplas	15

Standard-Cupla-S	Serie		
Micro Cupla	17	Mold Cupla	63
Micro Cupla with Tube Fitter	17	Mold Cupla High Flow Type	65
Micro Cupla Stainless Steel	20	Flow Meter	66
Small Cupla	21	Lever Lock Cupla Metal Body	67
Compact Cupla	23	Lever Lock Cupla Plastic Body	67
Cube Cupla	25	TSP Cupla	71
Super Cupla	27	TSP Cupla with Ball Valve	73
Super Cupla with Tube Fitter	27	SP Cupla Type A	75
Hi Cupla	29	Hot Water Cupla HW Type NEU	77
Hi Cupla BL	31	Zerospill Cupla	79
Hi Cupla 200	33	HSP Cupla	81
Hi Cupla 200 with Tube Fitter	33	Hyper HSP Cupla	83
Hi Cupla for Connection to Braided Hoses	35	210 Cupla	85
Nut Cupla	35	HSU Cupla	87
Nut Cupla 200	35	S210 Cupla	89
Rotary Nut Cupla	35	280 Cupla	91
Lock Cupla 200	37	350 Cupla	93
Hi Cupla Two Way Type	38	Flat Face Cupla F35	95
Full-Blow Cupla	39	Flat Face Cupla FF	97
Purge Hi Cupla PVR Type	41	450B Cupla	99
Purge Hi Cupla	43	700R Cupla	100
Purge Line Cupla	44	Multi Cupla MAM Type	101
Rotary Line Cupla RT Type	45	Multi Cupla MAM-B Type	103
Rotary Line Cupla RE Type	45	Multi Cupla MAM-A Type	107
Line Cupla 200T Type	47	Multi Cupla MAS Type / MAT Type	111
Line Cupla 200L Type	47	Multi Cupla MALC-01 Type	113
Line Cupla 200S Type	47	Multi Cupla MALC-SP Type	115
Rotary Full-Blow Line Cupla	49	Multi Cupla MALC-HSP Type	119
Hi Cupla Ace	51	Semicon Cupla SP Type	123
Rotary Plug	53	Semicon Cupla SCS Type	124
Twist Plug	54	Semicon Cupla SCY Type	125
Purge Plug	55	Semicon Cupla SCT Type	126
Anti-vibration Plug Hose	56	Semicon Cupla SCAL Type	127
Duster Cupla	57	Semicon Cupla SCF Type	128
NK Cupla Hose	58	SP-V Cupla	129
NK Cupla Coil Hose	58	PCV Pipe Cupla	131
Mini Cupla	59	Paint Cupla	133
Mini Cupla Super	61	Hygienic Cupla NEU	135

Semi-Standard Cupla-Serie

Cupla with Single Lock	137	High Flow Cupla	139
Cupla with Safety Lock	137	High Flow Cupla BI Type	140
Two-way Shut-off Type Small Size Cuplas	138	Plastic Cupla BC Type	141
TSP-HP Cupla for High Pressure	138	Plastic Cupla BCC Type	141

Zuhehör	142 bis 146
Zubenor	142 DIS 140

Dichtungsmaterial-Auswahltabelle als Referenz 14	47 bis 149
Gehäusewerkstoff-Auswahltabelle	150
Tabellen zur Einheitenumrechnung	151
Cupla-Anfrageformular	152
Kegelige Rohrgewinde	153
Austauschbarkeit der Hi Cupla-Serie	154
Produktionsstätten, die unsere Produktqualität sichern	155
Von der Entwicklung bis zur Produktion, Verwaltung und Vermarktung von "Cupla	s" 156
Nitto Kohkis arbeitserleichternde Produkte	157
Sicherheitsleitfaden/Wartung von Cuplas	58 bis 164

Es gibt eine große Auswahl an Gehäusewerkstoffen wie Stahl, Messing, Kunststoff, Aluminium oder Edelstahl.

Vorsicht vor gefälschten Produkten

Vor Kurzem sind auf dem Markt ähnliche Produkte erschienen, die fälschlicherweise für Cuplas von Nitto Kohki gehalten oder mit ihnen verwechselt werden können, oder es gibt Produkte, von denen behauptet wird, dass sie kompatible Gegenstücke haben. Nitto Kohki übernimmt keine Verantwortung für Unfälle, die möglicherweise durch gemischten Gebrauch mit einer Kupplung einer anderen Marke entstehen, die vorgibt, mit einem Cupla von Nitto Kohki kompatibel zu sein. Cuplas von Nitto Kohki werden mit ihren eigenen, einzigartigen Toleranzen und Präzisionswerten unter strenger Qualitätskontrolle hergestellt. Sie sind nicht durch andere Kupplungen austauschbar, welche diese Toleranzen nicht erfüllen. Aus diesem Grund kann es bei Verbindung mit einer Kupplung einer anderen Marke zu einem abrupten Ausfall oder zu Verletzungen kommen. Achten Sie daher bei der Bestellung und beim Kauf stets auf unsere Kennzeichnungen, die immer auf den Cupla-Produkten von Nitto Kohki angegeben

Nitto Kohkis umweltfreundliche Fertigung

Mensch und Das Zusammenleben von Natur. Unternehmen ist nun aufgefordert, die Umwelt auf globaler Ebene zu schützen und zu verbessern.

Im Rahmen der Maßnahmen zur Verbesserung der Umwelt bieten wir verschiedene Produkte wie "Kupplungen", "Maschinen und Werkzeuge", "Schraubendreher", "Luftkompressoren und Vakuumpumpen" sowie "Auto-Scharniere" als umweltfreundlich hergestellte Produkte an.

Umweltfreundliche Beschaffung

Wir bei Nitto Kohki haben mittels Einführung der Norm ISO 14001 alles dafür getan, um "Pläne zur Verbesserung des Umweltschutzes" zu entwickeln und dadurch unternehmensweit umweltbewusste Geschäftsaktivitäten durchführen zu können. Im Rahmen unseres kontinuierlichen Engagements für die Umwelt sind wir auch bestrebt, die in RoHS-Richtlinien, Gesetzen und Verordnungen für Chemikalien festgelegten reglementierten chemischen Stoffe in unseren Produkten zu reduzieren bzw. aus ihnen zu entfernen.

Alle Kupplungen mit Ausnahme der folgenden Produkte wurden auf umweltfreundliche Produkte umgestellt.

- Lever lock Cupla
- Alle Cupla with Tube Fitter
- Cupla Connecting Jig

Bitte besuchen Sie unsere Website für die entsprechenden Produkte.

www.nitto-kohki.co.jp/e/

Produkte mit reglementierten Substanzen und ergriffene Gegenmaßnahmen

Produkte (Standard-Cuplas)

Wichtige Gegenmaßnahmen

Produkte aus Messing

Verwendung von Cadmiumarmem Material (gemäß RoHS-Richtlinie)

Kupplungen mit Zink-Chrom-Auflage Beschichtung frei von sechswertigem Chrom (z. B. Vernickelung)

Hinweis: Farbe der Beschichtung

Die Farbe der Zinkverchromung ist gelb, während die Vernickelung silberfarben aussieht. Einige Produkte können bei Beschichtungsänderungen anders aussehen.

Eine Fülle von patentierten Technologien hat sich in der weltweiten Anerkennung von hoher Qualität und Leistung herauskristallisiert.

Auszeichnung für ISO 9001- und 14001-Zertifizierung

Die Schnellverschlusskupplungen, "Cuplas" genannt, werden als Ergebnis der Umsetzung von hochwertigem Know-how in der Fluid- und Werkstofftechnik sowie der Präzisionsbearbeitungstechnik auf höchstem Niveau hergestellt. Nach der Bewertung von Nitto Kohkis konsequentem Qualitätssicherungs- und Kontrollsystem, das von der Konstruktion und Entwicklung über die Materialbeschaffung, Herstellung, Montage bis hin zum Versand reicht, hat uns die japanische Qualitätssicherungsbehörde (Japan Quality Assurance Foundation) die internationale Norm für Qualitätsmanagementsysteme "ISO 9001" und die internationale Norm für Umweltmanagementsysteme zur Durchführung von globalen Umweltschutz- und Schadstoffbekämpfungsmaßnahmen "ISO 14001" verliehen. Die hohe Zuverlässigkeit stützt sich auf die beispiellose "hohe Qualität" und die akkumulierte "Produktivität" und garantiert so eine stabile Versorgung. Die Cuplas werden von vielen Anwendern auf der ganzen Welt als Top-Marke für Fluid-/Energieübertragung und -Steuerung angesehen und begeistert aufgenommen.

Wählen Sie einen geeigneten Cupla für die Aufgabe aus

Nitto Kohki bietet eine breite Palette von Cuplas, die fast alle Anwendungen und Funktionen abdeckt, die Sie benötigen. Um einen geeigneten Cupla für Ihre Aufgabe auswählen zu können, müssen Sie die folgenden Spezifikationen berücksichtigen.

Zu beachtende Spezifikationen bei der Auswahl von Cuplas

Fluid und **Temperatur**

Wählen Sie einen Cupla mit einem Gehäusewerkstoff und einem Dichtungsmaterial, welche dem Fluid und seiner Temperatur gerecht werden.

Es gibt verschiedene Gehäuse- und Dichtungsmaterialien für unterschiedliche Fluids. Zum Beispiel empfehlen wir Hi Cuplas aus Stahl für Luft und solche aus Messing oder Edelstahl für Wasser. Einzelheiten zur Relation zwischen Fluids und Materialien entnehmen Sie bitte der Gehäusewerkstoff-Auswahltabelle und der Dichtungsmaterial-Auswahltabelle am Ende dieses Katalogs.

Fluiddruck

Wählen Sie einen Cupla aus, der für den jeweiligen maximalen Fluiddruck geeignet ist.

Der Fluiddruck ist auch ein entscheidender Faktor bei der Auswahl des Cuplas. Jede Serie von hydraulischen Cuplas weist unterschiedliche Strukturen auf, um den jeweiligen Druckwiderständen zwischen 5,0 MPa (50 kgf/cm²) und 68,6 MPa (700 kgf/cm²) standzuhalten.

Automatisches **Absperrventil**

Wählen Sie einen Cupla mit einer Ventilkonstruktion, die für die Rohrleitungsanwendung geeignet ist.

Ventilkombinationen sind entweder beidseitig absperrend, einseitig absperrend oder in Durchgangsausführung gefertigt. Wählen Sie den Typ sorgfältig aus. Wenn es sich nicht um eine Zweiwegeabsperrung handelt, strömt das interne Fluid ohne Ventil beim Trennen aus dem Cupla aus.

Betriebsumgebung

Wählen Sie einen Cupla mit einem Design und aus Materialien, die für die jeweilige Betriebsumgebung geeignet sind.

Berücksichtigen Sie bei der Auswahl von Cupla, Gehäusewerkstoff und Dichtungsmaterial den Temperaturbereich, möglichen Schmutz und Staub und/oder eine potenzielle korrosive Atmosphäre in der Betriebsumgebung.

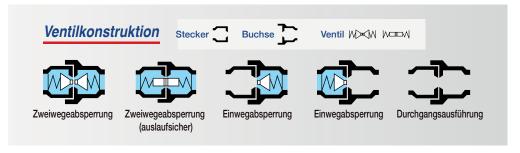
Größe und Typ der Endkonfigurationen

Legen Sie schließlich unter Abwägung aller Kriterien die Größe und den Typ der Endkonfigurationen fest.

Nachdem Sie den Typ und die Materialien für den Cupla überprüft haben, geben Sie nun die Größe und den Typ der Endkonfigurationen an, die für den Rohrleitungstyp geeignet sind. Treffen Sie eine sorgfältige Auswahl, da die Größe die Durchflussrate des Fluids beeinflusst.

Till Wels.

Die Wahl von Endkonfiguration und Größe ist unter Umständen durch den Tyn der Cuplas einneschränkt 如


Wenn Sie keinen passenden Cupla finden, geben Sie bitte die oben genannten Daten in das "Cupla-Anfrageformular" am Ende dieses Katalogs ein

Symbole

Symbole für einen schnellen Überblick:

(1) Art der Ventilkonstruktion, (2) Betriebsdruck und (3) Anwendbare Fluids sind auf jeder Produktseite angegeben, um Ihnen die schnelle Auswahl eines geeigneten Cuplas zu erleichtern. Bitte verwenden Sie diese als Richtlinie zum Verständnis der jeweiligen Typenauswahl.

Anwendbare Fluids

Sauerstoff, Brenngas

Vakuum, Helium

Hochreine

Chemikalien

Erhitztes Öl

Pulver

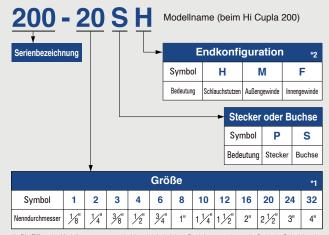
Lösemittelhaltige

Trinkwasser

Glossar

Die folgenden Begriffe werden auf den ausführlichen Informationsseiten zu den Cuplas verwendet.

Achten Sie beim Durchsehen der Cupla-Spezifikationen auf diese Begriffe.


Internationales Einheitensystem (SI-Einheiten)

Die in diesem Katalog angegebenen Einheiten basieren auf SI-Einheiten. Alte Einheiten, welche keine SI-Einheiten sind, sind ebenfalls in Klammern neben den SI-Einheiten als Referenz angegeben.

Glossar

Die Bedeutung der einzelnen Buchstaben im Modellnamen

Der Modellname eines Cuplas gibt seine Größe, ob es sich um einen Stecker oder eine Buchse handelt, sowie die Endkonfiguration an. Für einige hydraulische Cuplas wird auch der Nenndruck angegeben. Informieren Sie sich in den folgenden Tabellen über die Bedeutung des Modellnamens, bevor Sie Ihre Auswahl treffen.

^{*1:} Die Ziffern der Modellnummern unterscheiden sich bei einigen Produkten von denen der Symbole. Beispielsweise entspricht beim Hi Cupla 20SH nicht die "20", sondern nur die "2" aus der "20" der "2" des Symbols und gibt den Nenndurchmesser von 1/4" an.

Gehäusewerkstoff

Gibt das Material an, das für das Stecker- bzw. Buchsengehäuse verwendet wird, welches den Strömungsweg des Fluids durch den Cupla bildet. Einige Produkte haben interne Komponenten aus einem anderen Material. Für weitere Details wenden Sie sich bitte an uns.

Gehäuse	werkstoff				
Gebräuchliche Bezeichnung	Kennzeichnung	Wichtigstes einsetzbares Fluid			
Brass	BRASS	Air, Water, Oil			
Iron, Steel STEEL		Air, Oil			
Stainless steel SUS		Air, Water, Oil			

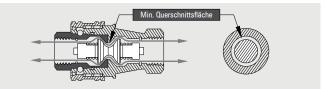
Die Gehäusewerkstoff-Auswahltabelle finden Sie auf Seite 150.

Größe


Gibt die Nennweite des Rohrgewindeanschlusses oder des zu verwendenden Schlauchs an

Betriebsdruck

Der normal zulässige Fluiddruck bei Dauereinsatz. Ein ständiges Überschreiten des Betriebsdrucks kann zu Leckagen oder Schäden führen.


Druckverlust

Zeigt den Druckverlust, wenn Fluid durch das Cupla-Set strömt.

Min. Querschnittsfläche

Zeigt die minimale Querschnittsfläche des Fluidwegs bei angeschlossenem Cupla an. Die Position ist bei einigen Produkten unterschiedlich.

Dichtungsmaterial

Hier ist das Material für die Abdichtung des Cuplas, in der Regel ein O-Ring, dargestellt. Das Standardmaterial ist Nitril-Butadien-Kautschuk. Wenn Sie andere als die unten aufgeführten Materialien verwenden, geben Sie bitte je nach Anwendung Silikon (SI), Butyl (IIR), Kalrez (KL) oder Gummi für

Eigenschaften der für O-Ringe verwendeten Gummis

Dichtungsmateria	Dichtungsmaterial		Fireneshafter		
Gebräuchliche Bezeichnung	Nitto-Kohki- Symbol	Betriebstemperaturbereich	Eigenschaften		
Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standarddichtung mit ausgezeichneter Ölbeständigkeit.		
Hydrogenated	HNBR	-20 °C bis +120 °C	Im Vergleich zum Standard-Nitrilkautschuk ist das Dichtungsmaterial hitze- und witterungsbeständiger.		
nitrile rubber	HNBR (H708)	-20 °C bis +120 °C	Zusätzlich zu den oben genannten Eigenschaften kann das Dichtungsmaterial auch für Kühlöl- und Kältemittelanwendungen wie HFC-134a verwendet werden, (Das Dichtungsmaterial wird nur beim SP-V Cupla und beim PCV Pipe Cupla verwendet.)		
Fluoro rubber	FKM (X-100)	-20 °C bis +180 °C	Hervorragend geeignet, wenn es auf Hitze-, Witterungs- und Ölbeständigkeit ankommt. Geeignet für einen breiten Anwendungsbereich von Fluorkautschuk.		
Chloroprene	CR (X-306)	-20 °C bis +80 °C	Ausgezeichnete Witterungsbeständigkeit.		
rubber	CR (C308)	-20 °C bis +80 °C	Zusätzlich zu den oben genannten Eigenschaften kann das Dichtungsmaterial auch für Kühlöl- und Kältemittelanwendungen wie HFC-134a verwendet werden.		
Ethylene-propylene rubber	EPDM (EPT)	-40 °C bis +150 °C	Hervorragende Dampf- und Heißwasserbeständigkeit, auch sehr gute Witterungs- und Ozonbeständigkeit.		
Perfluoro-elastomer	Р	0 °C bis +50 °C	Hervorragende Chemikalien- und Lösungsmittelbeständigkeit.		

Hinweis: Auch bei Gummiwerkstoffen der gleichen Kategorie unterscheidet sich der Betriebstemperaturbereich je nach Ausführung des Cuplas. Details finden Sie in den Spezifikationen der einzelnen Cupla-Serien. Was das Nitto-Kohki-Symbol für Gummimaterial betrifft, wird beispielsweise Fluorkautschuk als "FKM" oder "X-100" bezeichnet. Die oben genannten Eigenschaften sind allgemeiner Natur. Der Dichtungswiderstand hängt jedoch von der Temperatur des Fluids, der Konzentration des Fluids und den im Fluid enthaltenen Additiven ab.

Betriebstemperaturbereich

Zeigt die minimale und die maximale Temperatur, zwischen denen der Cupla mit dem Dichtungsmaterial eingesetzt werden kann. Dies bedeutet jedoch nicht, dass ein dauerhafter Einsatz bei den minimalen oder maximalen Betriebstemperaturen möglich ist. Bitte wenden Sie sich an uns, wenn Sie Cuplas unter solchen extremen Bedingungen einsetzen möchten.

Ventilkonstruktion

_		
Zweiwegeabsperrung	Sowohl Stecker als auch Buchsen sind mit automatischen Absperrventilen versehen. Die Ventile verhindern beim Trennen das Austreten von Fluid aus den Leitungen.	
Zweiwegeabsperrung (Leckreduzierung)	Die Zweiwegeabsperrung ("Two-way shut-off") mit Leckreduzierung ermöglicht beim Anschließen eine extrem geringe Beimischung von Luft und minimiert beim Trennen den Fluidaustritt.	
Einwegabsperrung	Diese Konstruktion verhindert beim Trennen nur den Fluidaustritt von der Buchsenseite. Ebenfalls erhältlich sind Stecker mit automatischem Absperrventil.	
Durchgangsausführung	Weder im Stecker noch in der Buchse ist ein Absperventil eingebaut. Beim Trennen strömt das Fluid aus beiden Seiten aus.	

Eignung für Vakuum

Zeigt an, ob der Cupla die für Vakuumanwendungen erforderliche Leistung hat. (Beachten Sie, dass die für Verbindung und Trennung erforderliche Leistung ieweils unterschiedlich ist.)

Austauschbarkeit

Gibt an, ob Stecker oder Buchsen verschiedener Serien, Typen oder Modelle miteinander verbunden werden können.

Max. Anzugsdrehmoment, Anzugsdrehmomentbereich

In Anbetracht des Gleichgewichts zwischen möglicher Leckage durch losen Sitz und zu hoher struktureller Beanspruchung bei der Montage eines Cuplas auf einem Werkstück wird der entsprechende Einschraubdrehmomentwert bzw. -bereich vom Hersteller vorgeschlagen.

Strömungsrichtung

Möglicherweise beschränkt das Design einiger Cuplas die Strömungsrichtung des Fluids auf nur eine Richtung. Überprüfen Sie vor der Montage die vom Hersteller vorgeschlagene Richtung.

^{*2:} Bei einem Produkt mit nur einem Endkonfigurationstyp entfällt dieses Symbol. Zum Beispiel verfügen 210 Cuplas nur über Innengewinde, sodass das Modell nur die Größe und die Stecker- bzw. Buchsenbezeichnung angibt.

Anwendbares I	Anwendbares Fluid Für Niederdruck (Luft)								
Name		Micro Cupla	Small Cupla	Compact Cupla	Cube Cupla	Super Cupla	Hi Cupla	Hi Cupla BL	Hi Cupla 200
Foto				11.10	Popular			The state of the s	
	Brass	1,0	1,0	1,0			1,0		
Gehäusewerkstoff	Stainless steel	1,0		1,0			1,5	1,5	
Betriebsdruck	Steel					1,0	1,5	1,5	1,5
(MPa)	Plastic				1,0				
	Others					1,0			
Gehäuseoberfläd	henbehandlung	Plated (Brass only)	Chrome plated	_	_	Chrome plated (Steel only)	Chrome plated (Steel only)	Chrome plated (Steel only)	Chrome plated
	1/8"	0	0	0	0	0	0		
	1/4"		0			0	0	0	0
	5/16"								
	3/8"						0	0	0
	1/2"						0	0	0
	3/4"						0		
C-=0-	1"						0		
Größe	1 1/4"								
	1 1/2"								
	2"								
	2 1/2"								
	3"								
	4"								
	Andere	0	0	0	0	0		0	0
Betriebstempe	raturbereich	-20 °C bis +80 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +180 °C (FKM)	-20 °C bis +60 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +60 °C (NBR)
Dichtungsmate	erial	NBR, FKM	NBR	FKM, EPDM	NBR	NBR	NBR, FKM	NBR	NBR
Vorhindungomethede	Manuell			0			0	0	
Verbindungsmethode	Push-to-connect-Prinzip	0	0		0	0			0
	Zweiwegeabsperrung			0	0				
Vontilkonotruktion	Zweiwegeabsperrung (Auslaufsicher)								
Ventilkonstruktion	Einwegabsperrung	0	0		0	0	0	0	0
	Durchgangsausführung				0				
Detaillierte Info	ormationsseite	17	21	23	25	27	29	31	33

	Für Niederdruck (Luft)									
Hi Cupla for Connection to Braided Hoses	Nut Cupla Rotary Nut Cupla	Nut Cupla 200	Lock Cupla 200	Hi Cupla Two Way Type	Full-Blow Cupla	Purge Hi Cupla PVR	Purge Hi Cupla	Purge Line Cupla	Rotary Line Cupla	
O. O.			No.					**		
1,0							1,0	1,0		
1,5	1,5	1,5	1,5	1,5						
					1,5	1,5			1,5	
Chrome plated (Steel only)	Chrome plated	Chrome plated	Chrome plated	Chrome plated	_	_	Chrome plated	Chrome plated	Chrome plated	
			0	0	0		0		0	
			0	0	0		0			
			0	0	0	0	0	0	0	
						0	0			
						0				
0	0	0	0		0				0	
-20 °C bis +80 °C (NBR)	-20 °C bis +60 °C (NBR)	-20 °C bis +60 °C (NBR)	-20 °C bis +60 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +60 °C (NBR)					
NBR	NBR	NBR	NBR	NBR, FKM	NBR	NBR	NBR	NBR	NBR	
0	0			0					0	
		0	0		0	0	0	0		
0	0	0	0	0	0	0	0	0	0	
35	35	35	37	38	39	41	43	44	45	

Anwendbares I	luid Für Niederdruck (Luft)								
Name		Line Cupla 200T/L/S	Rotary Full-Blow Line Cupla	Hi Cupla Ace	Rotary Plug	Twist Plug	Purge Plug	Anti-Vibration Plug Hose	Duster Cupla
Foto		本海				The same of the sa	No.	/	No.
	Brass								
Gehäusewerkstoff	Stainless steel								
Betriebsdruck	Steel				1,5	1,0	1,0		
(MPa)	Plastic			1,0, 1,5					
	Others	1,5	1,5					1,5	1,0
Gehäuseoberfläd	chenbehandlung	Chrome plated	_	_	Nickel plated	Nickel plated	Chrome plated	_	Chrome plated
	1/8"					0			
	1/4"	0	0	0	0	0	0	0	0
	5/16"								
	3/8"			0	0	0	0	0	0
	1/2"	0	0				0		0
	3/4"								
Größe	1"								
arono	1 1/4"								
	1 1/2"								
	2"								
	2 1/2"								
	3"								
	4"								
	Andere		0	0			0		0
Betriebstempe	raturbereich	-20 °C bis +60 °C (NBR)	-20 °C bis +60 °C (NBR)	-20 °C bis +60 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +60 °C (NBR)	-20 °C bis +60 °C (NBR)	_	-20 °C bis +60 °C (NBR)
Dichtungsmate	erial	NBR	NBR	NBR	NBR	NBR	NBR	_	NBR
Verbindungsmethode	Manuell								0
	Push-to-connect-Prinzip	0	0	0					
	Zweiwegeabsperrung								
Ventilkonstruktion	Zweiwegeabsperrung (Auslaufsicher)								
	Einwegabsperrung	0	0	0					0
	Durchgangsausführung								
Detaillierte Info	ormationsseite	47	49	51	53	54	55	56	57

Für Niedero	druck (Luft)	Für Sauerstoff	und Brenngas			Für Niederdr	uck (Wasser)		
NK Cupla Hose	NK Cupla Coil Hose	Mini Cupla	Mini Cupla Super	Micro Cupla	Small Cupla	Compact Cupla	Cube Cupla	Hi Cupla	Hi Cupla Ace
0	O					No. of Street,			
		0,7	0,7	1,0	1,0	1,0		1,0	
				1,0		1,0		1,5	
			0,7						
1,0	0,7						1,0		1,0, 1,5
Chrome plated	Chrome plated			Plated					
(Plug only)	(Plug only)	_	Chrome plated	(Brass only)	Chrome plated	_	_	_	_
		0		0	0	0	0	0	
		0	0		0			0	0
		0	0						
		0	0					0	0
								0	
								0	
0	0	0	0	0	0	0	0		0
-5 °C bis +60 °C (NBR)	-5 °C bis +60 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +180 °C (FKM)	-20 °C bis +60 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +60 °C (NBR)			
NBR	NBR	NBR	NBR	NBR, FKM	NBR	FKM, EPDM	NBR	NBR, FKM	NBR
						0		0	
0	0	0	0	0	0		0		0
						0	0		
							·		
0	0	0	0	0	0		0	0	0
58	58	59	61	20	21	23	25	29	51
				20		20	20		JI

Anwendbares F	Fluid		Für Niederdr	uck (Wasser)			Für Mitteldruck/	Für Niederdruck	
Name		Mold Cupla	Mold Cupla High Flow Type	Flow Meter	Lever Lock Cupla	TSP Cupla	TSP Cupla with Ball Valve	SP Cupla Type A	Hot Water Cupla HW Type
Foto				The state of the s					NEU
	Brass	1,0	1,0			5,0, 3,0, 2,0, 1,5	1,0	5,0, 3,0, 2,0, 1,5	2,0
Gehäusewerkstoff	Stainless steel				1,8, 1,6, 1,1	7,5, 4,5, 3,0, 2,0		7,5, 4,5, 3,0, 2,0	
Betriebsdruck	Steel					7,5, 4,5, 3,0, 2,0		7,5, 4,5, 3,0, 2,0	
(MPa)	Plastic				0,5, 0,2				
	Others			0,5	1,8, 1,1, 0,9, 0,7				
Gehäuseoberfläd	chenbehandlung	-	_	_	-	Nickel plated (Steel only)	_	Nickel plated (Steel only)	Nickel plated
	1/8"	0				0		0	
	1/4"	0	0			0	0	0	0
	5/16"								
	3/8"	0	0	0		0	0	0	0
	1/2"		0			0	0	0	0
	3/4"				0	0	0	0	
Größe	1"				0	0	0	0	
dione	1 1/4"				0	0		0	
	1 1/2"				0	0		0	
	2"				0	0		0	
	2 1/2"				0				
	3"				0				
	4"				0				
	Andere	0				0			
Betriebstempe	raturbereich	-20 °C bis +80 °C (NBR)	-20 °C bis +80 °C (NBR)	+20 °C bis +60 °C (NBR)	-20 °C bis +80 °C (NBR) +5 °C bis +50 °C (PP-Gehäuse)	-20 °C bis +80 °C (NBR)	-5 °C bis +120 °C (FKM)	-20 °C bis +80 °C (NBR)	-20 °C bis +180 °C (FKM)
Dichtungsmate	rial	NBR, FKM	NBR, FKM	NBR	NBR, FKM, SI, EPDM	NBR, FKM, EPDM	FKM	NBR, FKM, EPDM	FKM
Vorhindungomathada	Manuell				0	0	0	0	0
Verbindungsmethode	Push-to-connect-Prinzip	0	0						
	Zweiwegeabsperrung							0	0
Ventilkonstruktion	Zweiwegeabsperrung (Auslaufsicher)								
ventilikonsu ukuon	Einwegabsperrung	0	0				0		
	Durchgangsausführung	0	0		0	0			
Detaillierte Info	ormationsseite	63	65	66	67	71	73	75	77

Für Mitteldruck					Für Hochdruck				
Zerospill Cupla	HSP Cupla	Hyper HSP Cupla	210 Cupla	HSU Cupla	S210 Cupla	280 Cupla	350 Cupla	Flat Face Cupla F35	Flat Face Cupla FF
AN AND AND AND AND AND AND AND AND AND A							No. of the last		Olar Control
3,5									
3,5				21,0	20,6				
	20,6, 18,0, 14,0	20,6	20,6			31,5, 27,5	34,5	35	35
_	Nickel plated	Nickel plated	Nickel plated	_	_	Bright chromate conversion coating	Nickel plated	Nickel plated	Nickel plated
0	0	0	0	0	0	0	0	0	
	<u> </u>				<u> </u>	<u> </u>			
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0						0		
	0						0		
	0								
-20 °C bis +80 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +120 °C (HNBR)	-20 °C bis +180 °C (FKM)	-20 °C bis +80 °C (NBR)	-20 °C bis +180 °C (FKM)	-20 °C bis +180 °C (FKM)	-20 °C bis +80 °C (NBR)
NBR, FKM, EPDM	NBR, FKM	NBR	NBR, FKM	HNBR	FKM, NBR	NBR	FKM, NBR	FKM, NBR	NBR
	0	0	0	0	0	0			
0							0	0	0
	0	0	0	0	0	0			
0							0	0	0
79	81	83	85	87	89	91	93	95	97

Anwendbares Fluid		Für Hoo	hdruck	Für Multi-	Für Multi-Port-Verbindung (manuell)			ort-Verbindung (automatisch)
Name		450B Cupla	700R Cupla	Multi Cupla MAM Type	Multi Cupla MAM-B Type	Multi Cupla MAM-A Type	Multi Cupla MAS Type	Multi Cupla MAT Type	Multi Cupla MALC-01 Type
Foto						W		No.	AL IN
	Brass			0,7	1,0	1,0			1,0
Gehäusewerkstoff •	Stainless steel						7,0	7,0	
Betriebsdruck	Steel	44,1	68,6						
(MPa)	Plastic								
	Others								
Gehäuseoberfläd	henbehandlung	Nickel plated	Nickel plated	Chrome plated	Nickel plated	Nickel plated	Nickel plated	Nickel plated	Nickel plated
	1/8"			0	0				0
	1/4"				0	0	0	0	
	5/16"								
	3/8"	0	0			0	0	0	
	1/2"		0			0	0	0	
	3/4"						0	0	
Größe	1"						0	0	
	1 1/4"								
	1 1/2"								
	2"								
	2 1/2"								
	3"								
	4"								
	Andere								0
Betriebstemper	raturbereich	-20 °C bis +80 °C (NBR)	-20 °C bis +80 °C (NBR)	-20 °C bis +60 °C (NBR)	-20 °C bis +180 °C (FKM)	-20 °C bis +180 °C (FKM)	-20 °C bis +180 °C (FKM)	-20 °C bis +180 °C (FKM)	-20 °C bis +80 °C (NBR)
Dichtungsmate	rial	NBR, FKM	NBR, FKM	NBR	FKM	FKM	FKM	FKM	NBR
Vorbindunganethed	Manuell	0	0						
Verbindungsmethode	Push-to-connect-Prinzip								
	Zweiwegeabsperrung	0	0		0	0	0	0	
Ventilkonstruktion	Zweiwegeabsperrung (Auslaufsicher)								
Tentinkonsuruktion	Einwegabsperrung			0					0
	Durchgangsausführung								
Detaillierte Info	rmationsseite	99	100	101	103	107	111	111	113

Für Multi-Port-Verb	indung (automatisch)			Für hochreine	e Chemikalien			Für Inertgas	und Vakuum
Multi Cupla MALC-SP Type	Multi Cupla MALC-HSP Type	Semicon Cupla SP Type	Semicon Cupla SCS Type	Semicon Cupla SCY Type	Semicon Cupla SCT Type	Semicon Cupla SCAL Type	Semicon Cupla SCF Type	SP-V Cupla	PCV Pipe Cupla
		d d							
								5,0, 3,0	4,5
7,5, 5,0, 1,5	25,0, 21,0	0,2	0,2	0,2				7,5, 4,5	
					0,2	0,2	0,2		
Nickel plated	Nickel plated	Electropolished	Electropolished	Electropolished	_	_	_	_	_
0	0	0	0	0					
0	0	0	0	0	0	0		0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0		0	
0	0	0	0	0	0	0			
0						0			
0	0						0		0
-20 °C bis +180 °C (FKM)	-20 °C bis +180 °C (FKM)	0 °C bis +50 °C (FKM)	0 °C bis +50 °C (P)	0 °C bis +50 °C (P)	+5 °C bis +50 °C (FKM)	+5 °C bis +50 °C (FKM)	+5 °C bis +50 °C (FKM)	-20 °C bis +80 °C (CR)	-20 °C bis +80 °C (CR)
FKM	FKM	FKM, EPDM, P, KL	P (0-Ring für Buchse)	P, PTFE (Packungsdichtung für Buchse)	FEP-coated FKM	P (0-Ring für Buchse)	FEP-coated FKM	CR, FKM, HNBR	CR, FKM, HNBR
		0	0	0	0			0	0
						0	0		
		0	0	0	0		0	0	
0	0					0			
									0
115	119	123	124	125	126	127	128	129	131

Mithilfe dieser Tabelle können Sie schnell einen passenden Cupla für Ihre Anwendung auswählen. Die technischen Daten entnehmen Sie bitte den ausführlichen Informationsseiten der einzelnen Cuplas, der Dichtungsmaterial-Auswahltabelle und der Gehäusewerkstoff-Auswahltabelle am Ende dieses Katalogs.

Anwendbares I	Fluid	Für Lack	Für Lebensmittel
Name		Paint Cupla	Hygienic Cupla Easy Wash-Typ
Foto			NEU
	Brass		
Gehäusewerkstoff	Stainless steel	1,0 (Stecker)	1,0
Betriebsdruck	Steel		
(MPa)	Plastic		
	Others	1,0 (Buchse)	
Gehäuseoberfläd	chenbehandlung	_	Buff finish #400 (liquid contact part)
	1/8"		
	1/4"		
	5/16"		
	3/8"	0	
	1/2"		
	3/4"		
0 110	1"		
Größe	1 1/4"		
	1 1/2"		
	2"		
	2 1/2"		
	3"		
	4"		
	Andere		0
Betriebstempe	raturbereich	0 °C bis +50 °C (PFA)	0 °C bis +110 °C (SI)
Dichtungsmate	erial	PFA	SI, FKM, EPDM
Variation 1	Manuell	0	
Verbindungsmethode	Push-to-connect-Prinzip		0
	Zweiwegeabsperrung		
Ventilkonstruktion	Zweiwegeabsperrung (Auslaufsicher)		
Ventulkonstruktion	Einwegabsperrung	0	
	Durchgangsausführung		0
Detaillierte Info	ormationsseite	133	135

Cupla-Qualitätskontrolle

Cuplas werden dem Endverbraucher erst dann geliefert, wenn sie die sehr strengen Qualitätskontrollverfahren, zu denen sorgfältige Materialauswahl, lückenlose Verfolgung der Prozessgenauigkeit und strenge Haltbarkeitstests zählen, erfüllt haben. Unsere langjährige Verpflichtung zu einer gründlichen Qualitätskontrolle zahlt sich heute im Vertrauen der Anwender aus. Dennoch stellen wir uns der Herausforderung, ein noch höheres Qualitätsniveau

Ein Qualitätskontrollsystem, auf das die Endverbraucher immer vertrauen können.

Hydraulisches Schlagprüfgerät

Semi-Standard Cupla-Serie

Die "Semi-Standard Cupla-Serie" besteht aus Produkten mit einem bereits etablierten Datensatz, die aber keine Artikel des Standardbestands sind.

Cupla-Sicherheitsmechanismus Für Wasser TSP-HP Cupla (für hohe Drücke) Cupla with Single Lock 137 Mechanismus zur Verhinderung unbeabsichtigter Trennungen Hochdruck-Typ in Universalausführung Betriebsdruck: 9.0 MPa {92 kgf/cm²} Gehäusewerkstoff: Stainless steel Anwendung: 1/4" bis 1/2" Dichtungsmaterial: NBR usw. Cupla with Safety Lock 137 Mechanismus zur Verhinderung unbeabsichtigter Trennungen Für Niederdruck (Luft) Plastic Cupla BC Type 141 Betriebsdruck: 0,07 MPa {0,7 kgf/cm²} Gehäusewerkstoff: Plastic Für Temperaturregler Anwendung: 1/4", 3/8" Dichtungsmaterial: NBR Plastic Cupla BCC Type **MYU Cupla** 141 138 Für Kleinrohrleitungen (max. 10 mm Außendurc Anwendbare Fluids: Water, gas, air Ausgestattet mit Durchflussregler für Niederdruckluftleitungen inter (III) n WW Zv W. Betriebsdruck: 1,0 MPa (10 kgf/cm²) Gehäusewerkstoff: Stainless steel, brass (beschichtet) Anwendung: Bitte teilen Sie uns die gewünschten Größen und Endkonfigurationen mit. Dichtungsmaterial: NBR, EPDM, FKM Betriebsdruck: 0,07 MPa {0,7 kgf/cm²} Gehäusewerkstoff: Plastic Anwendung: 3/8' Dichtungsmaterial: NBR **Little Cupla** Für Kleinrohrleitungen (max. 14 mm Außendurchm Anwendbare Fluids: Water, gas, air Ventilkanstruktion Betriebsdruck: 1,5 MPa {15 kgf/cm²} Gehäusewerkstoff: Stainless steel Anwendung: Bitte teilen Sie uns die gewünschten Größen und Endkonfiguratione Dichtungsmaterial: NBR, EPDM, FKM **High Flow Cupla** 139 Für Rohrleitungen zur Temperaturregelung Anwendbare Fluids: Water, Heat transfer fluids truktion W Betriebsdruck: 1.0 MPa {10 kgf/cm²} Anwendung: 1/4" bis 1/2" Dichtungsmaterial: EPDM, FKM

High Flow Cupla BI Type

High Flow Cupla mit Klemmring-Flanschbefestigung

Anwendbare Fluids: Water, Heat transfer fluids

Betriebsdruck: 1,0 MPa {10 kgf/cm²} Gehäusewerkstoff: Stainless steel

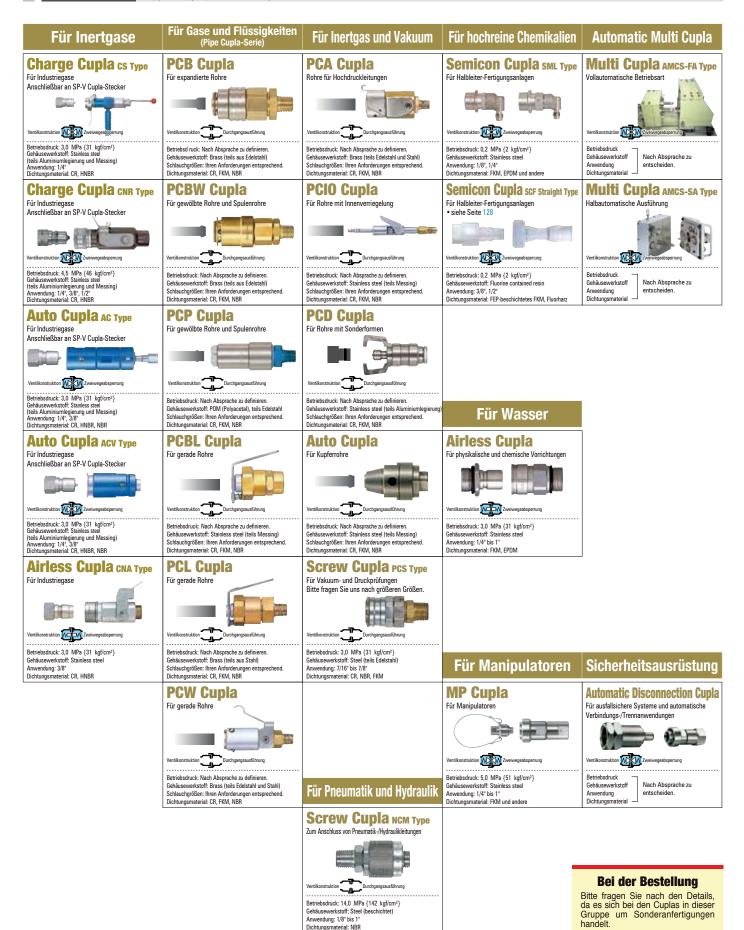
Anwendung: 1/8" bis 1/2"

Dichtungsmaterial: EPDM, FKM

Bei der Bestellung

Bitte wählen Sie aus der Spalte auf einzelnen Produktseiten (rechts neben dem Produktnamen) die passende Kombination und danach die Dichtungsund Gehäusewerkstoffe aus den am Ende dieses Katalogs aufgeführten Auswahltabellen aus.

Zubehör

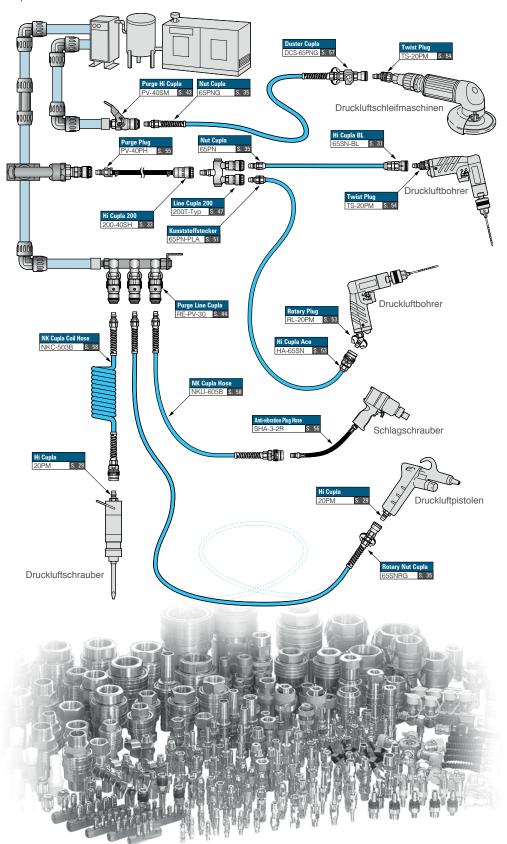


Sonderanfertigungen von Cuplas

Nitto Kohki entwickelt Cuplas mit verschiedenen Funktionen und Spezifikationen für die jeweilige Anwendung. Die Cuplas auf dieser Seite sind Beispiele dafür.

Wichtiger Hinweis

Sonderanfertigungen von Cuplas werden nach spezifischen Anweisungen/Vorgaben des Kunden geliefert. Sobald die schriftliche Annahme unserer endgültigen Zeichnung/Spezifikationen des Cupla vom Kunden vorliegt, nehmen wir diese als endgültige Bestellung an. Für die Sicherheit und Anpassbarkeit an die in der Anwendung eingesetzten Schläuche, Rohre oder Geräte ist es unedässlich, als Kunde eine Funktionsprüfung des speziell auf Bestellung gefertigten Cuplas unter dessen spezifischen Einsatzbedingungen durchzuführen. Die Verwendung des auf Bestellung hergestellten Cuplas in einer anderen Anwendung oder einem anderen Zustand als in der Konstruktionszeichnung angegeben, schließt Nitto Kohki von jeglicher Haftung für spezielle, indirekte oder Folgeschäden aus.



Index

Beispiele für Luftleitungsverbindungen mit Modellen aus der Hi Cuplas-Gruppe

Die Luftverteilung gehört zu den typischen Rohrleitungssystemarten. Die verschiedenen Modelle der Hi Cupla-Serie erfüllen alle Anforderungen an die Luftversorgung, angefangen bei Haupteinspeisung, Relais in Fabriken, Rohrendenverbindungen bis hin zu Druckluftwerkzeugen und den Anforderungen der Luftversorgung innerhalb von Geräten. Die folgende Skizze zeigt Ihnen einige Beispiele für Luftrohre unter Verwendung der Hi Cupla-Serie und kann als gute Referenz bei der Auswahl geeigneter Cuplas dienen.

	Produktname	Coito
2	210 Cupla	Seite
	280 Cupla	85 91
3	350 Cupla	93
4	450B Cupla	99
7	700R Cupla	100
Α	Anti-vibration Plug Hose	56
С	Compact Cupla	23
	Cube Cupla	25
₽	Duster Cupla	57
F	Flat Face Cupla F35	95
	Flat Face Cupla FF	97
	Flow Meter Full-Blow Cupla	66 39
Н	Hi Cupla	29
-	Hi Cupla 200	33
	Hi Cupla Ace	51
	Hi Cupla BL	31
	Hi Cupla for Connection to Braided Hoses	35
	Hi Cupla Two Way Type	38
	Hot Water Cupla HW Type NEU	77
	HSP Cupla	81
	HSU Cupla	87
	Hygienic Cupla NEU	135
	Hyper HSP Cupla	83
L	Lever Lock Cupla Metal Body	67
	Lever Lock Cupla Plastic Body Line Cupla 200	67 47
	Lock Cupla 200	37
М	Micro Cupla	17
	Mini Cupla	59
	Mini Cupla Super	61
	Mold Cupla	63
	Mold Cupla High Flow Type	65
	Multi Cupla MALC-01 Type	113
	Multi Cupla MALC-HSP Type	119
	Multi Cupla MALC-SP Type	115
	Multi Cupla MAM-A Type	107
	Multi Cupla MAM-B Type	103
	Multi Cupla MAM Type	101
	Multi Cupla MAS Type	111
N	Multi Cupla MAT Type NK Cupla Coil Hose	111 58
Ш	NK Cupla Hose	58
	Nut Cupla	35
	Nut Cupla 200	35
Р	Paint Cupla	133
	PCV Pipe Cupla	131
	Purge Hi Cupla	43
	Purge Hi Cupla PVR Type	41
	Purge Line Cupla	44
	Purge Plug	55
R	Rotary Full-Blow Line Cupla	49
	Rotary Line Cupla	45
	Rotary Nut Cupla	35
S	Rotary Plug S210 Cupla	53 89
9	Semicon Cupla SCAL Type	127
	Semicon Cupla SCF Type	128
	Semicon Cupla SP Type	123
	Semicon Cupla SCS Type	124
	Semicon Cupla SCT Type	126
	Semicon Cupla SCY Type	125
	Small Cupla	21
	SP Cupla Type A	75
	SP-V Cupla	129
	Super Cupla	27
T	TSP Cupla with Ball Valva	71
	TSP Cupla with Ball Valve Twist Plug	73 54
Z	Zerospill Cupla	79
	20.00pm oupld	7.5

Für Niederdruck

Micro Cupla

Für Rohrleitungen in pneumatischen Steuerungen

Kompakte, leichte Cuplas mit nur 9,5 mm Außendurchmesser. Push-to-connect-Verfahren. Schlauchanschlusstyp für noch einfacheres Einführen der Schläuche.

- Auch wenn das Ventil in der Buchse eingebaut ist, ist der Hülsenaußendurchmesser auf 9,5 mm begrenzt.
- Push-to-connect-Ausführung.
- Kompakte Bauform für Rohrleitungen auf engstem Raum.
- Gehäuse aus beschichtetem Messing und Edelstahl für hervorragende Korrosionsbeständigkeit erhältlich.
- Erhältlich in verschiedenen Endkonfigurationen für eine Vielzahl von pneumatischen Anwendungen.

Hinweis: Das Fluid strömt beim Trennen aus der Steckerseite aus.

Treffen Sie die notwendigen Vorsichtsmaßnahmen, wenn es sich bei dem Fluid um Wasser handelt.

Techn	Technische Daten						
Gehäuse	werkstoff	Cupla: Brass (Plated), Stainless steel (SUS 304) Tube Fitter Part: Brass (Plated)					
	Gewinde		1/8", N	15 x 0,8	_		
			Rohr-ID) ø3, ø4			
Größe	Rohrsteckdorn	Polyuretha	ane tube: Außen	durchm. ø4 \pm 0,1	, ø 6 ± 0 ,1		
	(Tube fitter)	Polyamide tube: Außendurchm. ø4 +0,05 / 06 +0,05					
		Fluorine contained resin tube: Außendurchm. ø4 $\pm 0,05$, ø6 $\pm 0,07$					
Druckein	heit	MPa	kgf/cm²	Bar	PSI		
Betriebs	druck	1,0	10	10	145		
Diohtuna	ısmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke		
	temperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial		
	•	Fluoro rubber	FKM (X-100)	20 °C bis +180 °C	Sonderanfertigung(en)		

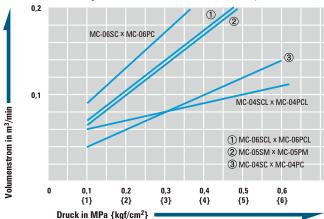
 Obige Angaben gelten nur für Cuplas. Der maximale Betriebsdruck und der Betriebstemperaturbereich können je nach verwendetem Rohrmaterial und Betriebstemperatur variieren. Der Cupla mit Schlauchanschluss hat lediglich NBR-Verpackungsmaterial.

Max. Anzu	Nm {kgf∙cm}		
Größe (Gewinde) M5 × 0,8			R 1/8
Drehmoment	Brass	1,3 {13}	5 {51}
Dieillioilleilt	Stainless steel		7 {71}

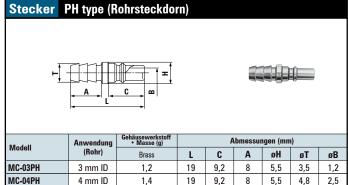
Strömungsrichtung

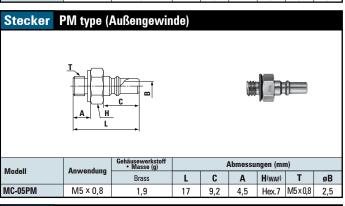
Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

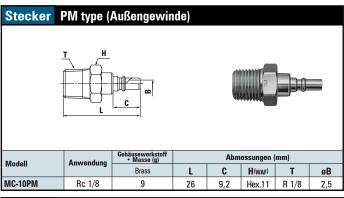
Austauschbarkeit

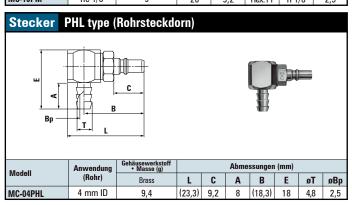

Buchsen und Stecker können unabhängig von den Endkonfigurationen angeschlossen werden.

Min. Querschnittsfläche (mm						
Modell	MC-03SP	MC-04SP	MC-05SP	MC-10SP	Schlauchanschlusstyp für Schlauch mit 4 mm AD	Schlauchanschlusstyp für Schlauch mit 6 mm AD
Min. Querschnittsfläche	1,1	4,9	4,9	4,9	4,9	4,9

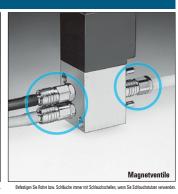

Eignung für Vakuum		53,0 kPa {400 mmHg}
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit

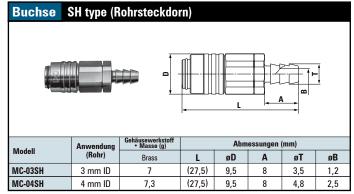

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur

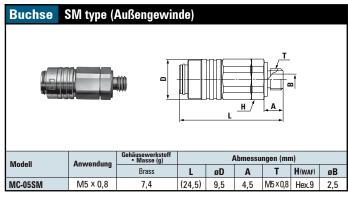

• Schlauchgröße: ø4 mm x ø2 mm, ø6 mm ø4 mm (Micro Cupla with Tube Fitter)

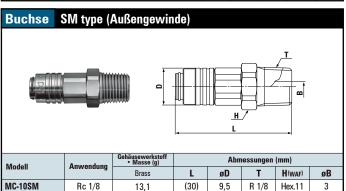


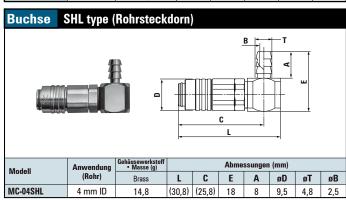
Modelle und Abmessungen

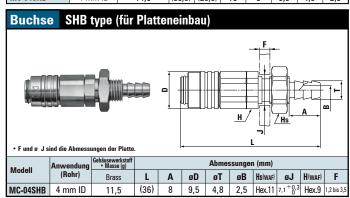


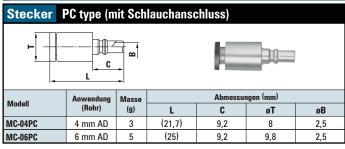


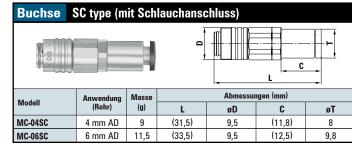


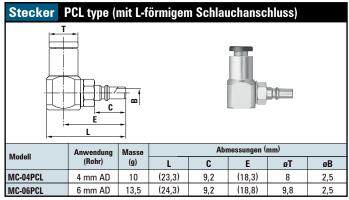


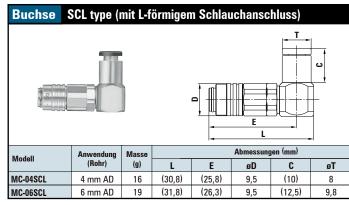


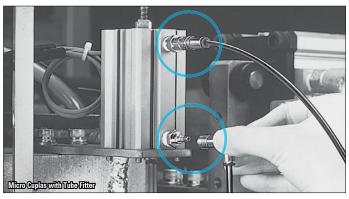


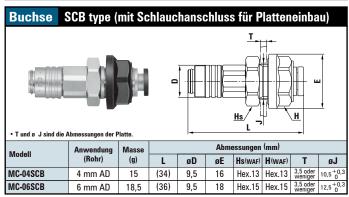


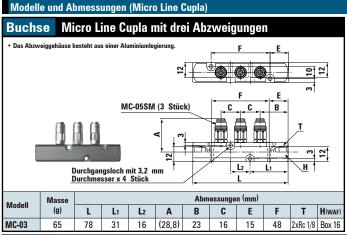


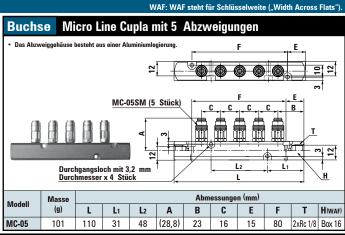


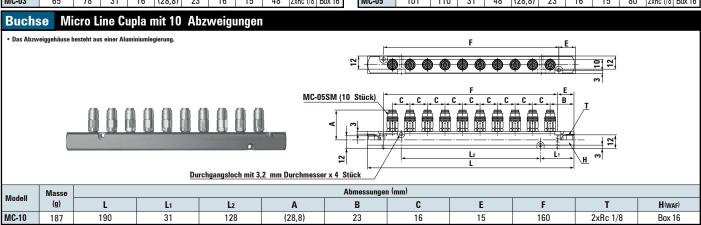




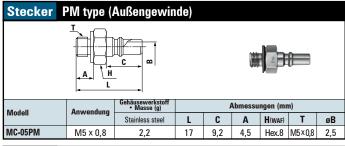


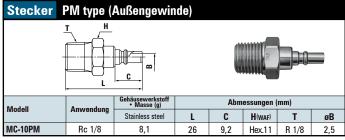


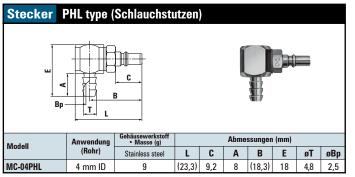




Micro Cupla

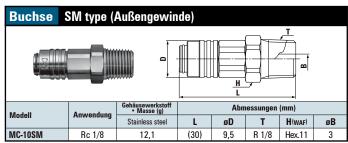

Modelle aus Stainless Steel

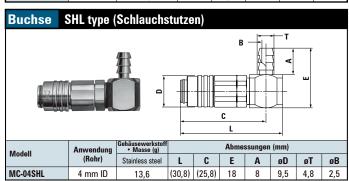

Sehr korrosionsbeständiger **Stainless Steel Micro Cupla**

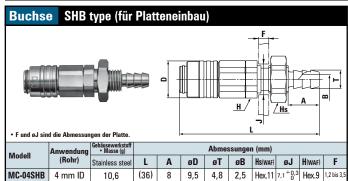


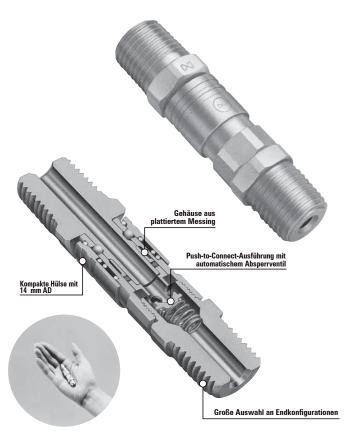
Modelle und Abmessungen (Stainless Steel) Stecker PH type (Schlauchstutzen) Abmessungen (mm Anwendu (Rohr) Modell øΒ Stainless steel C Α øΗ αT











Für Niederdruck **Small Cupla** Leicht und kompakt für den Einsatz an Luftleitungen und wissenschaftlichen Geräten

Leichtes und kompaktes Push-to-connect-Verfahren. Erfüllt die Anforderungen modularer Kombinationen.

- Kompakte Buchse mit integriertem Ventil und Hülse mit 14 mm AD. Geeignet für Anwendungen, die kompakte und modulare Komponenten erfordern.
- Durch einfaches Einstecken des Steckers in die Buchse wird der Anschluss per einfacher Einhandbedienung ermöglicht.
- Plattiertes Messing sorgt für die Korrosionsbeständigkeit des Gehäuses. Stabile Leistung für eine lange Betriebsdauer.
- Eine breite Palette von Endkonfigurationen (Innen- und Außengewinde, Schlauchstutzen, Verteiler) ermöglicht die Eignung für eine Vielzahl von Rohrleitungsanwendungen, wie z. B. pneumatische, wissenschaftliche und medizinische Geräte.
- Auch mit Schlauchanschluss-Schnellkupplung lieferbar.

Hinweis: Das Fluid strömt beim Trennen aus der Steckerseite aus. Treffen Sie die notwendigen Vorsichtsmaßnahmen, wenn es sich bei dem Fluid um Wasser handelt.

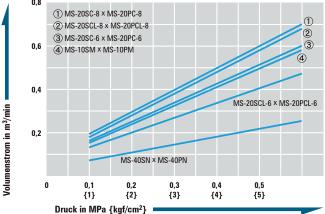
Technische Daten						
Gehäusew	erkstoff	Cupla: Brass (Chrome plated) Schlauchanschlussteil: Brass (Nickel plated)				
	Gewinde		1/8"	, 1/4"		
Größe	Schlauchstutzen	I	•	ø4 x ø6, ø4,5 x ø ose: ø4 x ø6	6	
01000	Rohrsteckdorn (Schlauchanschluss)	Polya	amide tube: Auß	durchm. ø6 ± 0 ,1 endurchm. ø6 $^{+0}$,0 ußendurchm. ø6 \pm	05 08, Ø8 ^{+0,05} 08, Ø8 -0,1	
Druckeinh	eit	MPa	kgf/cm ²	Bar	PSI	
Betriebsdruck		1,0	10	10	145	
Dichtungsmaterial		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke	
Betriebste	mperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial	

Obige Angaben gelten nur für Cuplas. Der maximale Betriebsdruck und der Betriebstemperaturbereich können je nach verwendetem Rohrmaterial und Betriebstemperatur variieren.

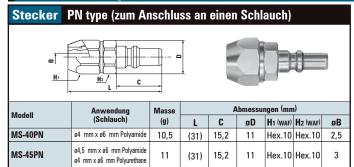
Max. Anzugsdrehmoment Nm {kgf·cn					
Größe (Gewinde)	1/4"	PN • SN-Typ			
Drehmoment	5 {51}	9 {92}	5 {51}		

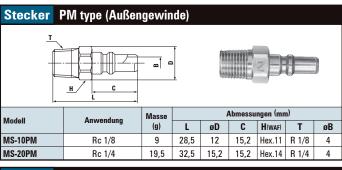
Strömungsrichtung Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

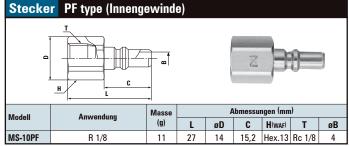
Austauschbarkeit

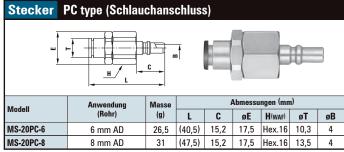

Buchsen und Stecker können unabhängig von den Endkonfigurationen angeschlossen werden.

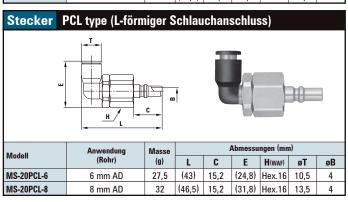
Min. Querschnittsfläche (mm						(mm²)
Modell	MS-10SM X MS-10PM	MS-20SM X MS-20PM	MS-40SN X MS-40PN	MS-45SN X MS-45PN	Schlauchanschlusstyp für Schlauch mit 6 mm AD	Schlauchanschlusstyp für Schlauch mit 8 mm AD
Min. Querschnittsfläche	12,5	12,5	4,9	7	12,5	12,5

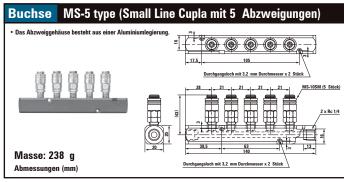

Eignung für Vakuum	53,0 kPa {400 mmHg}	
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit

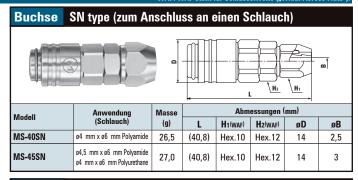

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur

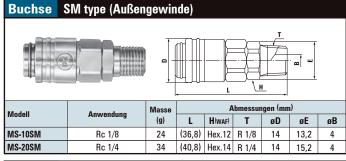


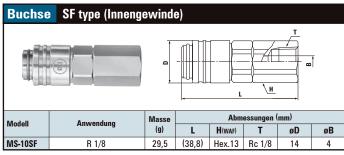


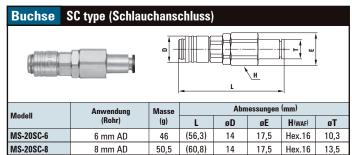

Modelle und Abmessungen

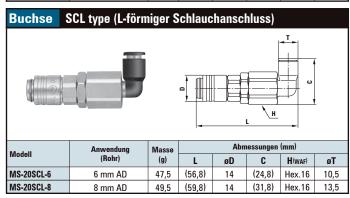


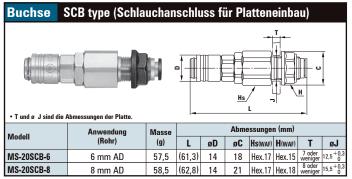












Für Niederdruck

Compact Cupla

Kleine Mehrzweckausführung für Niederdruckleitungen

Kompakte 17,5 mm Außendurchmesser, jedoch mit integrierten automatischen **Absperrventilen in Buchse und Stecker.**

- Sowohl Buchse als auch Stecker haben integrier te automatische Absperrventile.
- Kompakte Größe mit max. Außen-Ø von 17,5 mm.
- Für Kleinrohrleitungen von der Temperierleitung bis zur wissenschaftlichen
- Gehäusewerkstoffe in Edelstahl (SUS304) oder Messing, mit ausgezeichneter Korrosionsbeständigkeit.
- Vier Arten der Endkonfiguration ermöglichen die Eignung für eine breite Palette von Rohrleitungsanwendungen.

Technische Daten						
Gehäusewerkstoff		Brass		Stainless steel (SUS 304)		
	Gewinde	1/8"				
Größe	Rohrsteckdorn	Polyamide tube: ø4 x ø6, ø6 x ø8 Polyolefin tube: ø4 x ø6, ø6 x ø8 Fluorine contained resin tube: ø4 x ø6, ø6 x ø8				
Druckeinh	eit	MPa kgf/cm² Bar		PSI		
Betriebsdr	ruck	1,0	10	10	145	
Dichtungsmaterial Betriebstemperaturbereich		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke	
		Fluoro rubber	FKM	-20 °C bis +180 °C	Standardmaterial	
		Ethylene-propylene rubber	EPDM	-40 °C bis +150 °C	auf Anfrage erhältlich	

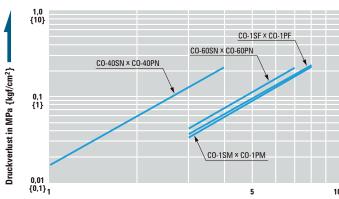
Hinweis: Maximaler Betriebsdruck und Betriebstemperaturbereich des Mutterntyps (Nut-Typ) sind abhängig vom Schlauchwerkstoff und seiner Maßtoleranz.

Max. Anz	zugsdreh	moment	Nm {kgf·cm}
Größe (Gew	rinde)	1/8"	Rohrsteckdorn
Duckmanant	Brass	5 {51}	5 {51}
Drehmoment	Stainless steel	9 {92}	7 {71}

Strömungsrichtung Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

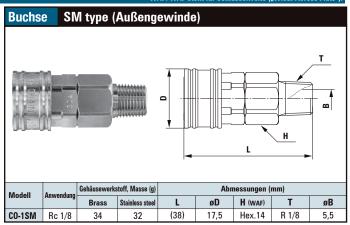
Buchse und Stecker des Compact Cuplas können unabhängig von den Endkonfigurationen

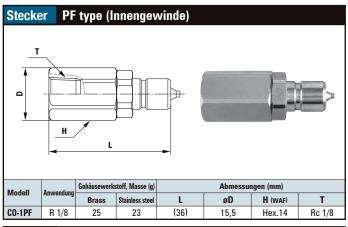
Min. Querschnittsfläche (mm						
Modell	CO-1SM × CO-1PM	CO-1SF x CO-1PF	CO-40SN x CO-40PN	CO-60SN x CO-60PN		
Min. Querschnittsfläche	8,8	8,8	4,9	8,8		

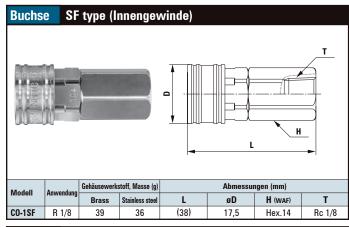

Eignung für Vakuum	1,3	x 10 ⁻¹ Pa {1 x 10 ³ mmHg}
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit

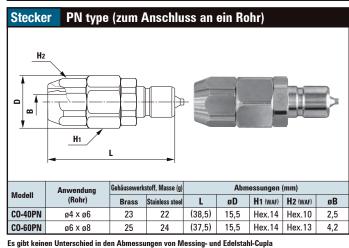
Die Beimischung von Luft beim Anschließen kann je nach Einsatzbedingungen variieren.			
Volumen der Luftbeimischung	0,34		

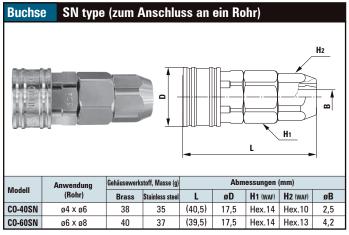

Das Verschüttetes Volumen pro		Trennung der Verbindung kann je nach Einsatzbedingungen variieren.	(ml)
Verschüttungsvolumen		0.23	

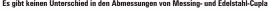

Volumenstrom – Druckverlustcharakteristik

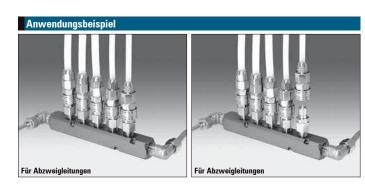

[Testbedingungen] • Fluid: Water • Temperatur: 20 °C+5 °C

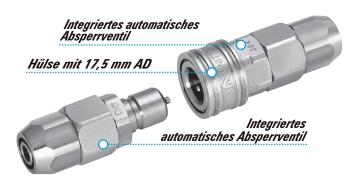



Modelle und Abmessungen









Für Niederdruck **Cube Cupla** Kleine, leichte Kupplung für Luftzuleitungen zu medizinischen und/oder wissenschaftlichen Geräten

Sowohl Buchse als auch Stecker haben integrierte Ventiltypen und ventillose Typen. Einfaches Anschließen bzw. Trennen mit einem Handgriff. Leichte Kunststoffkupplung.

- Ultraleicht, aus Polyacetalharz.
- Kompakte Bauweise für geringen Platzbedarf.
- Zum Verbinden einfach den Stecker in die Buchse stecken. Zum Trennen der Verbindung drücken Sie einfach den Knopf an der Buchse.
- Geeignet für ein breites Anwendungsspektrum von medizinischen/ wissenschaftlichen Geräten bis hin zu Getränkemaschinen oder Halbleiter-Fertigungsanlagen.
- Buchse und Stecker können nur getrennt werden, wenn gleichzeitig zwei Tasten an der Buchse gedrückt werden.

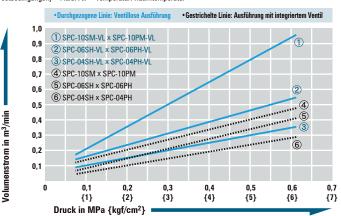
Hinweis: Bei Verwendung einer Buchse oder eines Steckers ohne Ventil strömt das Fluid beim Trennen aus ihr/ihm aus.

Treffen Sie die notwendigen Vorsichtsmaßnahmen, wenn es sich bei dem Fluid um Wasser handelt.

Technische Daten							
Gehäusewerkstoff		Polyacetal resin (POM)					
Größe	Rohr mit 4 mm- und 6 mm-ID, Rc 1/8						
Druckeinheit	MPa kgf/cm² Bar PSI						
Betriebsdruck	1,0	10	10	145			
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +60 °C	Standardmaterial			

Max. Anzugsdrehmome	ent Nm {kgf·cm}
Größe (Gewinde)	1/8"
Drehmoment	1,3 {13}

Strömungsrichtung Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

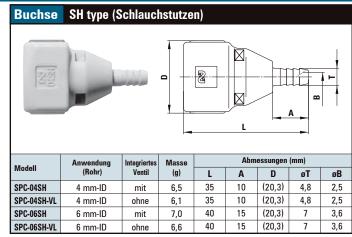

Kann unabhängig von der Endkonfiguration mit Stecker und Buchse für einen Cube Cupla des gleichen Typs angeschlossen werden. Buchsen mit integrierten Ventilen können jedoch nicht mit ventillosen Steckern verbunden werden.

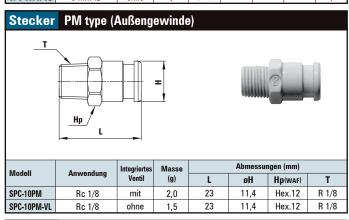
Min. Querschnittsfläche						(mm²)
Modell	04PH/04PHB	06PH/06PHB	10PM	04PH-VL/04PHB-VL	06PH-VL/06PHB-VL	10PM-VL
SPC-04SH	5	5	5	_	_	_
SPC-06SH	5	8,6	8,6	_	_	_
SPC-10SM	5	8,6	8,6	_	_	_
SPC-04SH-VL	5	5	5	5	5	5
SPC-06SH-VL	5	8,6	8,6	5	10,2	10,2
SPC-10SM-VL	5	8,6	8,6	5	10,2	16,6

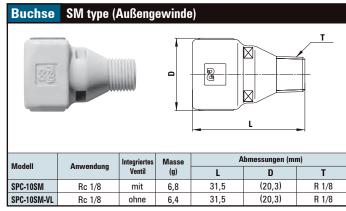
Eignung für Vakuum		53,0 kPa {400 mmHg}
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit

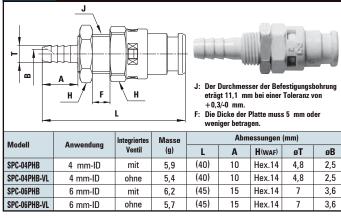
Druck-Volumenstrom-Kennlinien

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur



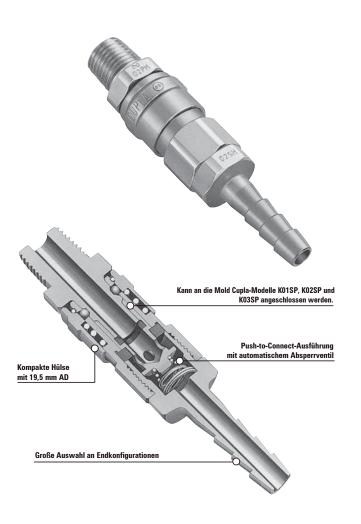

An	Anschlussmöglichkeit Wählen Sie die für Ihre Anwendung geeignete Modellkombination aus.									
Ar	ıschlussmöglichkeit	Stecker								
	Ventil	mit	ohne							
Buchse	mit	Zweiwegeabsperrung	nicht anschließbar							
Buc	ohne	Einwegabsperrung	Durchgangsausführung							


Modelle und Abmessungen


Stecker

Stecker PH type (Schlauchstutzen) œ Abmessungen (mm) Integriertes Ventil Masse Modell (g) Α αН øΤ øΒ (36) SPC-04PH 10 14 2,5 4 mm-ID 3.1 4,8 mit SPC-04PH-VL 4 mm-ID ohne 2,6 (36)10 14 4,8 2,5 SPC-06PH 6 mm-ID 3.4 (40) 15 14 7 3,6 mit SPC-06PH-VL 6 mm-ID ohne 2,9 (40) 15 14 7 3,6




PHB type (für Platteneinbau)

Für Niederdruck (Luft) **Super Cupla** Leicht, kompakt für Luftleitungsanschlüsse

Durch die Leichtbauweise ist der Cupla bestens für Elektrowerkzeuge geeignet! **Einfache Bedienung dank Push-to-connect-Prinzip.**

- Leichtbauweise für den direkten Anschluss an Elektrowerkzeuge. Bei einigen Modellen wird ein Aluminiumgehäuse verwendet, um das Gewicht zu reduzieren.
- Simples Verbinden mit nur einer Hand einfach den Stecker in die Buchse
- Erhältlich in verschiedenen Endkonfigurationen für eine Vielzahl von pneumatischen Anwendungen.
- Modell 02S20P kann mit Buchsen für die Hi Cupla-Modelle 10, 17, 20, 30 und
- · Auch mit Schlauchanschluss-Schnellkupplung lieferbar.

Technis	sche Daten								
Gehäusew	erkstoff			plated), Aluminui il: Brass (Nickel p	,				
	Gewinde		1/8"	, 1/4"					
	Schlauchstutzen	1/4	1/4", Urethane hose: ø5 x ø8, ø6,5 x ø10						
Größe	Rohrsteckdorn (Schlauchanschluss)	Polyurethane tube: Außendurchm. ø 6 ± 0 ,1, ø 8 ± 0 ,15 Polyamide tube: Außendurchm. ø $6^{+0.05}_{-0.08}$, ø $8^{+0.05}_{-0.1}$ Fluorine contained resin tube: Außendurchm. ø 6 ± 0 ,07, ø 8 ± 0 ,07							
Druckeinh	eit	MPa	kgf/cm²	Bar	PSI				
Betriebsdr	uck	1,0	10	10	145				
Dichtungs		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke				
Betriebste	mperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial				

 Obige Angaben gelten nur für Cuplas. Der maximale Betriebsdruck und der Betriebstemperaturbereich können je nach verwendetem Rohrmaterial und Betriebstemperatur variieren Der Cupla with Tube Fitter hat lediglich NBR-Verpackungsmaterial.

Max. Anzugsdrehmome	Nm {kgf·cm}	
Größe (Gewinde)	1/8"	1/4"
Drehmoment	7 {71}	14 {143}

Anzugsdrehmomentbereich	Nm {kgf·cm}
PN-Typ, SN-Typ	
9 bis 11 {92 bis 112}	

Zur Montage auf einem Urethanschlauch schieben Sie diesen auf den Schlauchstutzen und ziehen Sie die Mutter fest, bis sie bündig mit dem Schlauchstutzen abschließt.

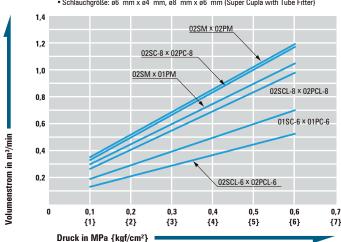
Es wird empfohlen, die Innenseite der Mutter (Gewindeteil und Schlauchkontaktteil) zu fetten, um das Anziehen zu erleichtern

Strömungsrichtung Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

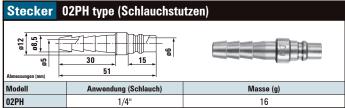
Unabhängig von Größen und Endkonfigurationen können beliebige Buchsen und Stecker angeschlossen werden.

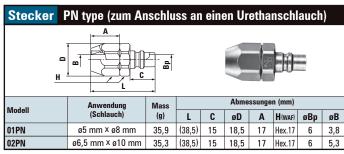
*Kann mit Mold Cuplas verbunden werden.

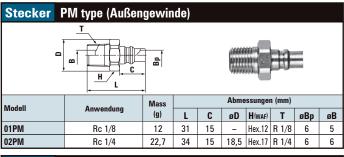
*Bei Verwendung von Konverterbuchse und -stecker Modell 02S20P können Super Cupla-Stecker mit Buchsen für die Hi Cupla-Modelle 20, 30 und 40 verbunden werden.

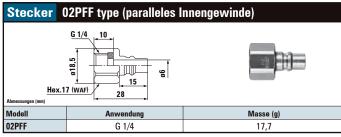

Min. Querschnittsfläche (m									
Stecker	01PN	02PC-6	02PC-8	02PH	02PN	02PM			
Buchse	UIPN	02PCL-6	02PCL-8	01PM	UZFIN	02PFF			
01SN	11,3	11,3	11,3	11,3	11,3	11,3			
02SC-6/02SCL-6/02SCB-6	11,3	12,5	12,5	12,5	12,5	12,5			
02SC-8/02SCL-8/02SCB-8	11,3	12,5	19	19	19	19			
02SH	11,3	12,5	19	19,6	19,6	19,6			
02SN	11,3	12,5	19	19,6	22	22			
02SM/02SF/02SMF	11,3	12,5	19	19,6	22	28,2			
02S20P	11,3	12,5	19	19,6	22	28,2			

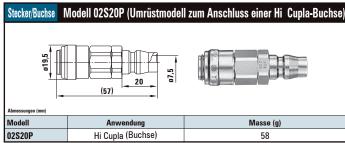
Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

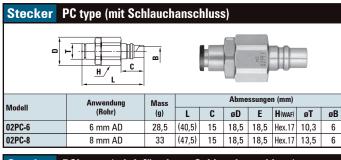

Druck-Volumenstrom-Kennlinien

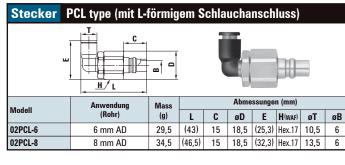

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur

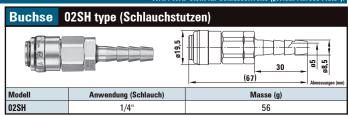

Schlauchgröße: ø6 mm x ø4 mm, ø8 mm x ø6 mm (Super Cupla with Tube Fitter)

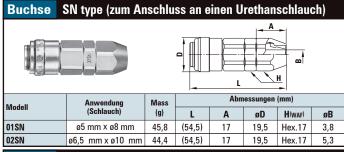


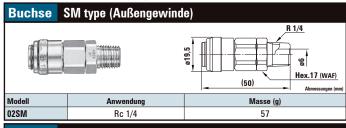


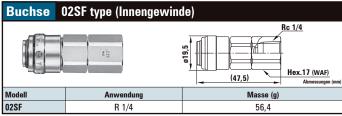


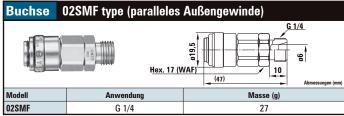


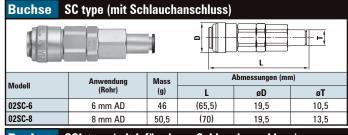


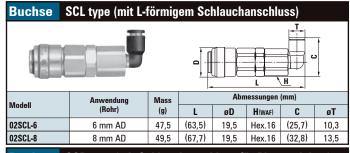


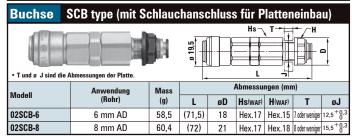


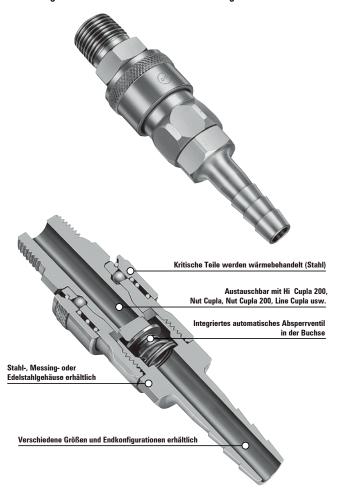












Für Niederdruck Hi Cupla Universalkupplungen für Luftleitungen

Von der werkseitigen Druckluftleitung bis zum Anschluss von Druckluftwerkzeugen, erhältlich in verschiedenen Gehäusewerkstoffen, Größen und **Endkonfigurationen.** Ausgezeichnete Haltbarkeit.

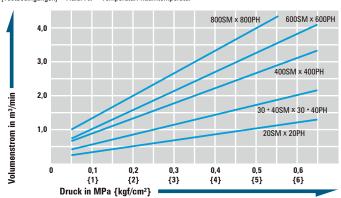
- Eine ausgezeichnete Universalkupplung zum Anschluss der werkseitigen Druckluftversorgung an Druckluftwerkzeuge.
- Die Stahlkupplung ist für Luft geeignet. Messing oder Edelstahl ist für Wasser geeignet. Beachten Sie, dass das Fluid aus dem Stecker austritt, wenn dieser abgezogen wird.
- Kritische Konstruktionsteile von Stahlmodellen werden wärmebehandelt, um die Festigkeit und somit die Lebensdauer und Verschleißfestigkeit zu erhöhen.
- Erhältlich in verschiedenen Gehäusewerkstoffen, Größen und Endkonfigurationen für eine Vielzahl von Anwendungen.

Technische l	Daten						
Gehäusewerkstof	Gehäusewerkstoff			Br	ass	Stain	less steel (SUS304)
Größe G	ewinde			1/8'	bis 1"		
Schla	uchstutzen			1/4"- bis	1"-Schlauch	1	
	1,5		1,0		1,5		
Betriehsdruck	kgf/cm²	15		10		15	
2011020111011	Bar	15	15		10		15
	PSI	218	218		145		218
Dichtungsmaterial Betriebstemperaturbereich		Dichtungsmaterial	Ken	nzeichnung	Betriebstemperaturbereich		Vermerke
		Nitrile rubber	N	BR (SG)	-20 °C bis +80 °C		Standardmaterial
		Fluoro rubber	FKI	M (X-100)	-20 °C bis +	180°C	Standardmaterial

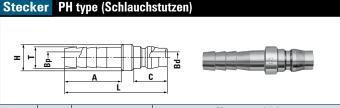
Max. Anzugsdrehmoment Nm {kgf·cm}									
Größe (Gewinde)		1/8"	1/4"	3/8"	1/2"	3/4"	1"		
Drehmoment	Steel	7 {71}	14 {143}	22 {224}	60 {612}	100 {1020}	120 {1224}		
	Brass	5 {51}	9 {92}	11 {112}	30 {306}	50 {510}	65 {663}		
	Stainless steel	ı	14 {143}	22 {224}	60 {612}	100 {1020}	120 {1224}		

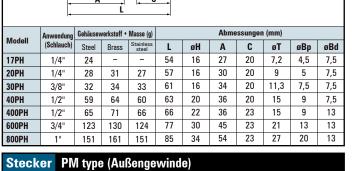
Strömungsrichtung
Das Fluid muss von der Buchse zum Stecker strömen.

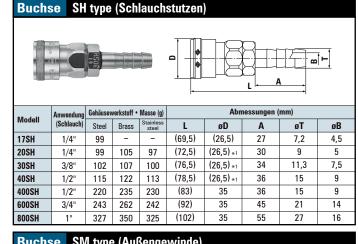
- Buchsen und Stecker für die Modelle 10, 17, 20, 30 und 40 können unabhängig von den Endkonfigurationen miteinander verbunden werden.
- Buchsen und Stecker für die Modelle 400, 600 und 800 können unabhängig von den Endkonfigurationen miteinander verbunden werden. 10 und 20 können nicht gruppenübergreifend miteinander verbunden werden.
- Austauschbar mit allen anderen Produkten der Hi Cupla-Serie. Bitte beachten Sie die Seite "Austauschbarkeit der Hi Cupla-Serie".

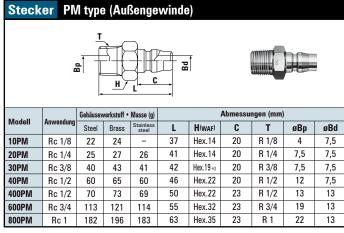

Min. Querschnittsfläche Typen 10, 17, 20, 30, 40 Buchse 20PH 30PH 40PH 10PM 20PM 30PM 40PM 20PF 30PF 40PF 17PH 10SM 17SH 20SH 20SM, SF 30SH 30SM, SF 40SH 40SM, SF

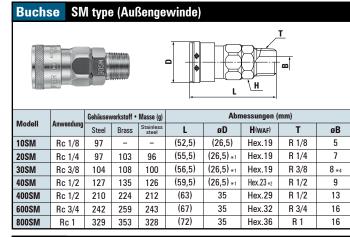
Typen 400, 600, 800 Buchse 400PH 600PH 800PH 400PM 600PM 800PM 400PF 600PF 800PF 400SM, SF 600SH 600SM, SF 800SH 800SM, SF

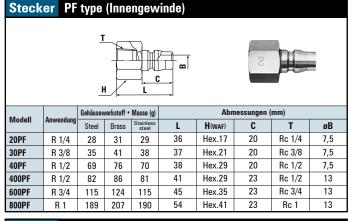

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

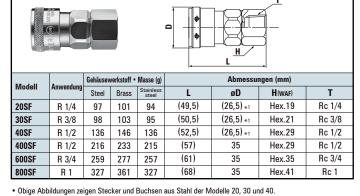

Druck-Volumenstrom-Kennlinien

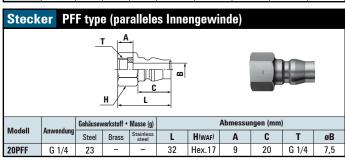

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatu




Modelle und Abmessungen







*1: D = 25,4 für Modelle aus Messing und Edelstahl.

SF type (Innengewinde)

- *2: H = Hex. 22 für Modelle aus Messing und Edelstahl. *3: H = Hex. 17 für Modelle aus Messing und Edelstahl.
- *4: B = 9 für Modelle aus Messing und Edelstahl.

Buchse

Für Niederdruck

Hi Cupla BL

Universalkupplungen mit Hülsenverriegelungsmechanismus für Luftleitungen

- Der Hülsenverriegelungsmechanismus verhindert ein versehentliches Lösen.
- Eine ausgezeichnete Universalkupplung zum Anschluss der werkseitigen Druckluftversorgung an Druckluftwerkzeuge.
- Die Stahlkupplung ist für Luft geeignet. Edelstahl ist für Wasser geeignet. Beachten Sie, dass das Fluid aus dem Stecker austritt, wenn dieser abgezogen wird.
- Kritische Konstruktionsteile aus Stahl werden wärmebehandelt, um die Festigkeit und somit die Lebensdauer und Verschleißfestigkeit zu erhöhen.
- Verschiedene Gehäusewerkstoffe, Größen und Endkonfigurationen sind verfügbar.
- Der SN-BL-Typ zum Anschluss an einen Urethanschlauch benötigt keine Schlauchschelle.

Tecl	Technische Daten							
Gehäus	sewerkstoff	Steel (Chro	me plated)	Stainless ste	el (SUS304)			
	Gewinde und Schlauchstutzen		1/4", 3,	/8", 1/2"				
Größe	SN Type	Für einen Schlauch mi Für einen Schlauch m Für einen Schlauch mit		-				
Drucke	einheit	MPa	kgf/cm ²	Bar	PSI			
Betriel	bsdruck	1,5	15	15	218			
Dichtu	ngsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Betriel	bstemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial			

Hinweis: Der Betriebstemperaturbereich des SN-BL-Typs liegt zwischen -20 und +60 °C.

Max. Anzugsdrehmoment Nm {kgf·cm							
Größe (Gewinde)		1/4"	3/8"	1/2"			
Dualimamant	Stahl	14 {143}	22 {224}	60 {612}			
Drehmoment	Edelstahl	14 {143}	22 {224}	60 {612}			

Anzugsdrehmomentbereich	Nm {kgf·cm}
SN Type	
9 bis 11 {92 bis 112}	

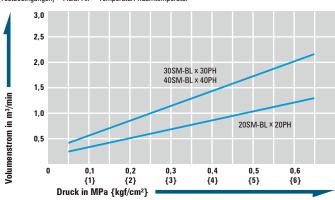
Zur Montage auf einem Urethanschlauch schieben Sie diesen auf den Schlauchstutzen und ziehen Sie die Mutter fest, bis sie

Es wird emofohlen, die Innenseite der Mutter (Gewindeteil und Schlauchkontaktteil) zu fetten, um das Anziehen zu erleichtern.

Strömungsrichtung Das Fluid muss von der Buchse zum Stecker strömen.

Austauschbarkeit

- Buchsen und Stecker für die Modelle 10, 17, 20, 30 und 40 können unabhängig von den Endkonfigurationen miteinander verbunden werden.
- Austauschbar mit allen anderen Produkten der Hi Cupla-Serie. Bitte beachten Sie die Seite "Austauschbarkeit der Hi Cupla-Serie".


Min. Que	Min. Querschnittsfläche (mm²)										
Buchse Stecker	17PH	20PH	30PH	40PH	10PM	20PM	30PM	40PM	20PF	30PF	40PF
20SH-BL	16	20	20	20	13	20	20	20	20	20	20
20SM-BL	16	20	33	33	13	33	33	33	33	33	33
20SF-BL	16	20	33	33	13	33	33	33	33	33	33
30SH-BL	16	20	33	33	13	33	33	33	33	33	33
30SM-BL	16	20	33	33	13	33	33	33	33	33	33
30SF-BL	16	20	33	33	13	33	33	33	33	33	33
40SH-BL	16	20	33	33	13	33	33	33	33	33	33
40SM-BL	16	20	33	33	13	33	33	33	33	33	33
40SF-BL	16	20	33	33	13	33	33	33	33	33	33
65SN-BL	16	20	22	22	13	22	22	22	22	22	22
80SN-BL	16	20	33	33	13	33	33	33	33	33	33
85SN-BL	16	20	33	33	13	33	33	33	33	33	33

Eignung für Vakuum

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

Druck-Volumenstrom-Kennlinier

[Testbedingungen] • Fluid: Air • Temperatur.

Rc 1/2

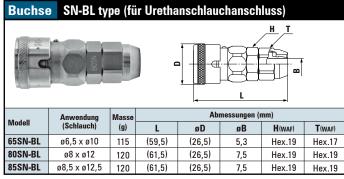
131

Steel

SH-BL type (Schlauchstutzen) **Buchse**

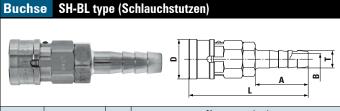
Modell	Anwendung	Masse	Abmessungen (mm)						
ivioueii	(Schlauch)	(g)	L	øD	Α	øT	øB		
20SH-BL	1/4"	103	(72,5)	(26,5)	30	9	5		
30SH-BL	3/8"	106	(76,5)	(26,5)	34	11,3	7,5		
40SH-BL	1/2"	118	(78,5)	(26,5)	36	15	9		

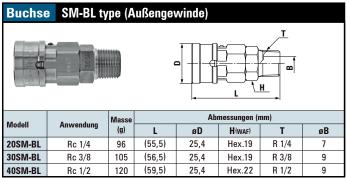
Buchse SM-BL type (Außengewinde) Н Abmessungen (mm) Mass Modell øD H(WAF) øΒ 20SM-BL Rc 1/4 101 (55,5)(26,5)Hex.19 R 1/4 30SM-BL Rc 3/8 108 (56,5) (26,5) Hex.19 R 3/8 8

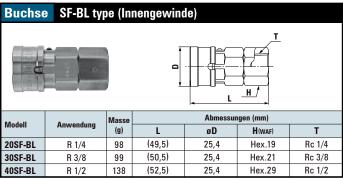

(59,5)

(26,5)

R 1/2


9





Stainless steel

Modell	Anwendung	Masse	asse Abmessungen (mm)					
Monen	(Schlauch)	(g)	L	øD	Α	øT	øB	
20SH-BL	1/4"	100	(72,5)	25,4	30	9	5	
30SH-BL	3/8"	101	(76,5)	25,4	34	11,3	7,5	
40SH-BL	1/2"	118	(78,5)	25,4	36	15	9	

Für Niederdruck (Luft)

Hi Cupla 200

Push-to-connect-Ausführung für Luftleitungen

Einfache und sichere Push-to-connect-Ausführung! Hoher Volumenstrom! Bauweise mit Stirnflächendichtung. Bietet ein ausgezeichnetes Griffgefühl.

- Einfach den Stecker in die Buchse stecken und schon ist die Verbindung sicher und einfach hergestellt.
 - Das reduziert die Verbindungszeit und verbessert die Effizienz.
- Neues Ventildesign für geringe Druckverluste zur Erhöhung des Volumenstroms (15 % mehr als beim herkömmlichen Modell).
- Eine Stirnflächendichtung wird beim Verbinden hergestellt.
- Verbesserte Bedienbarkeit bei geringem Anschlusswiderstand.
- Das Design der Stirnflächendichtung ist der äußeren Dichtung mit O-Ring überlegen, da keine Beschädigung der Dichtung aufgrund aufgebrauchter Schmierung entsteht.
- Nur mit Stahlgehäuse lieferbar. Nicht geeignet für Wasser und Öl.
- Auch mit Schlauchanschluss-Schnellkupplung lieferbar.

Technische Daten									
Gehäus	ewerkstoff		Steel (Chr	ome plated)					
	Gewinde und Schlauchstutzen		1/4", 3	/8", 1/2"					
Größe	Rohrsteckdorn (Schlauchanschluss)	Polyamio	Polyurethane tube: Außendurchm. $\mathfrak{g6} \pm 0.1$, $\mathfrak{g8} \pm 0.15$, $\mathfrak{g10} \pm 0.15$ Polyamide tube: Außendurchm. $\mathfrak{g6}^{+0.05}_{-0.08}$, $\mathfrak{g8}^{+0.05}_{-0.1}$, $\mathfrak{g10}^{+0.05}_{-0.1}$ luorine contained resin tube: Außendurchm. $\mathfrak{g6} \pm 0.07$, $\mathfrak{g8} \pm 0.07$, $\mathfrak{g10} \pm 0.07$						
Drucke	inheit	MPa	kgf/cm ²						
Betrieb	sdruck	1,5	15	15	218				
Dichtungsmaterial		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke				
Betrieb	stemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +60 °C	Standardmaterial				

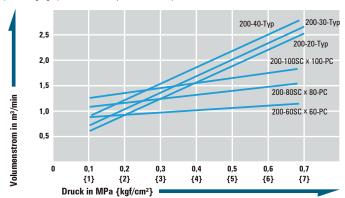
Obige Angaben gelten nur für Cuplas. Der maximale Betriebsdruck und der Betriebstemperaturbereich können je nach den Materialien des Rohres und der Betriebstemperatur variieren.

Max. Anzugsdrehmome	ent		Nm {kgf·cm}
Größe (Gewinde)	1/4"	3/8"	1/2"
Drehmoment	14 {143}	22 {224}	60 {612}

Strömungsrichtung

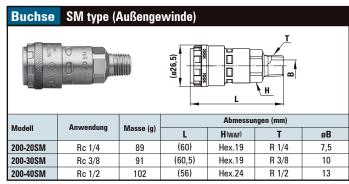
Das Fluid muss von der Buchse zum Stecker strömen.

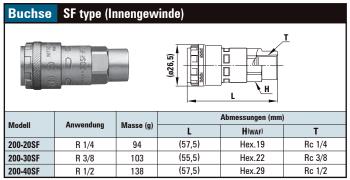
Austauschbar mit den Hi Cupla-Modellen 20, 30 und 40. Austauschbar mit den entsprechenden Modellen der Hi Cupla-Serie.

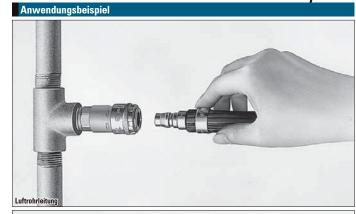

Min. Que	erschni	ttsfläc	he							(mm²)
Stecke Buchse	17PH	20PH	30PH	40PH	10PM	20PM	30PM	40PM	20PF	30PF	40PF
200-17SH	16	16	16	16	13	16	16	16	16	16	16
200-20SH	16	20	20	20	13	20	20	20	20	20	20
200-30SH	16	20	41	41	13	41	41	41	41	41	41
200-40SH	16	20	41	41	13	41	41	41	41	41	41
200-20SM	16	20	41	41	13	41	41	41	41	41	41
200-30SM	16	20	41	41	13	41	41	41	41	41	41
200-40SM	16	20	41	41	13	41	41	41	41	41	41
200-20SF	16	20	41	41	13	41	41	41	41	41	41
200-30SF	16	20	41	41	13	41	41	41	41	41	41
200-40SF	16	20	41	41	13	41	41	41	41	41	41

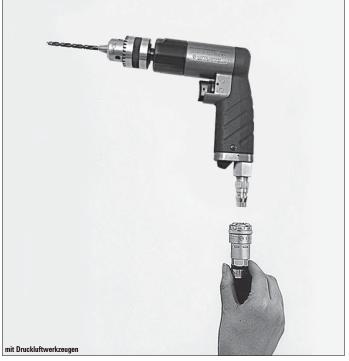
Eignung für Vakuum

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

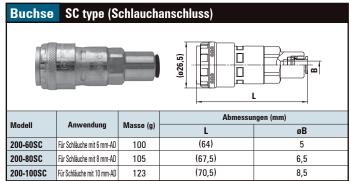

Druck-Volumenstrom-Kennlinien

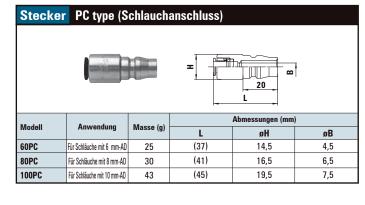

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur

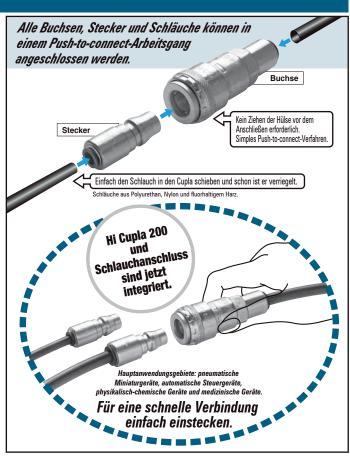



SH type (Schlauchstutzen) **Buchse** m

Madell	Anwendung	B# (.)	Abmessungen (mm)						
Modell	(Schlauch)	Masse (g)	L	Α	øT	øB			
200-17SH	1/4"	86	(77)	27	7,2	4,5			
200-20SH	1/4"	90	(77)	27,5	9	5			
200-30SH	3/8"	92	(79)	32	11,3	7,5			
200-40SH	1/2"	104	(79,5)	32	15	10			







Modelle und Abmessungen (mit Schlauchanschluss)

Die Außenmaße von Modell 200-100SC unterscheiden sich etwas von denen anderer Modelle.

Für Niederdruck (Luft)

Hi Cupla for Connection to Braided Hoses Nut Cupla Nut Cupla 200 Rotary Nut Cupla

Zum Anschluss an einen Urethanschlauch

Keine Schlauchschelle erforderlich! Mit Schlauchschutzmutter gegen Knicken.

Hi Cupla for connection to braided hoses sind jetzt erhältlich.

- Mutterntypen (Nut-Typen) sind in den Hi Cupla- und Hi Cupla 200-Serien erhältlich. Ausführung mit Schlauchschutzmutter zur Vermeidung von Schlauchknicken erhältlich.
- Zur Montage am Schlauch einfach über den Nippel schieben und die Mutter anziehen.
- Die Konstruktion zum Festziehen außerhalb des Schlauchs reduziert das Abrutschen des Schlauchs sowie das Austreten des Fluids.
- Ebenfalls erhältlich sind Rotary Nut Cuplas mit kugelgelagertem Schwenkmechanismus zur Vermeidung und Reduzierung von Spannungen an den Händen des Bedieners.

Technische Daten (Nut Cupla/Nut Cupla 200/Rotary Nut Cupla)									
Gehäusewerkstoff	Steel (Chrome plated)								
Urethanschlauchgröße	Für Schläuch	Für Schläuche mit ø5 mm x ø8 mm, ø6 mm x ø9 mm Für Schläuche mit ø6,5 mm x ø10 mm, ø8 mm x ø12 mm Für Schläuche mit ø8,5 mm x ø12,5 mm, ø11 mm x ø16 mm							
Druckeinheit	MPa	kgf/cm ²	Bar	PSI					
Betriebsdruck	1,5 15		15	218					
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke					
Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +60 °C	Standardmaterial					

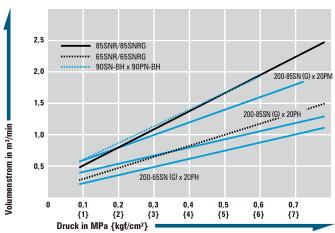
Technische Daten (Hi Cupla for Connection to Braided Hoses)									
Gehäusewerkstoff		Steel (Chro	me plated)	Brass					
Größe des Geflechtsch	Größe des Geflechtschlauchs			ø9 mm x ø15 mm					
	MPa	1,	5	1,0					
Betriebsdruck	kgf/cm ²	1	5	10					
2011020111011	Bar	gf/cm ² 15 10	15 10		0				
	PSI	21	18	14	15				
Dichtungsmaterial		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke				
Betriebstemperaturbereich		Nitrile rubber NBR (SG)		-20 °C bis +80 °C Standardmater					

Maximaler Betriebsdruck und Temperaturbereich des PN/SN-Typs für Geflechtschläuche hängt von der Spezifikation des zu verwendenden Geflechtschlauchs ab.

Anzugsdrehmomentber	Anzugsdrehmomentbereich Nm {k						
Modell	SN, PN, SNR Type	65SNG, PNG, SNRG Type	e 85SNG, PNG, SNRG Type				
Drehmoment	9 bis 11 {92 bis 112}	5 bis 6 {51 bis 61}	7 bis 8 {71 bis 82}				

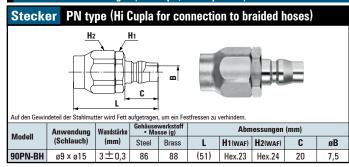
Zur Montage auf einem Geflechtschlauch oder Urethanschlauch schieben Sie diesen auf den Schlauchstutzen und ziehen Sie die Mutter fest, bis sie bündig mit dem Schlauchstutzen abschließt. Es wird empfohlen, die Innenseite der Mutter (Gewindeteil und Schlauchkontaktteil) zu fetten, um das Anziehen zu erleichtern.

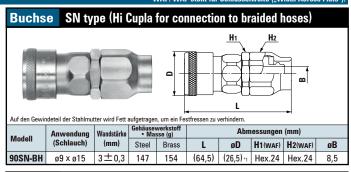
Strömungsrichtung

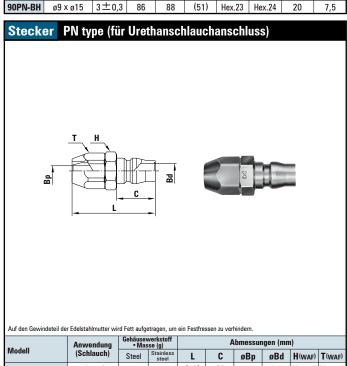

Austauschbar mit den Hi Cupla-Modellen 10, 17, 20, 30 und 40. Austauschbar mit den entsprechenden Modellen der Hi Cupla-Serie

Min. Que	Min. Querschnittsfläche (mm											nm²)
Stecker	17PH	20PH	30PH	40PH	10PM	20PM	30PM	40PM	20PF	30PF	40PF	90PN-BH
200-50SN	16	16	16	16	13	16	16	16	16	16	16	16
200-60SN	16	20	22	22	13	22	22	22	22	22	22	22
200-65SN	16	20	22	22	13	22	22	22	22	22	22	22
200-80SN	16	20	41	41	13	41	41	41	41	41	41	41
200-85SN	16	20	41	41	13	41	41	41	41	41	41	41
200-110SN	16	20	41	41	13	41	41	41	41	41	41	41
200-50SNG	16	16	16	16	13	16	16	16	16	16	16	16
200-65SNG	16	20	22	22	13	22	22	22	22	22	22	22
200-85SNG	16	20	40	41	13	41	41	41	41	41	41	41
90SN-BH	16	20	33	33	13	33	33	33	33	33	33	33

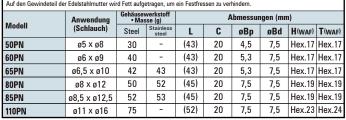
Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

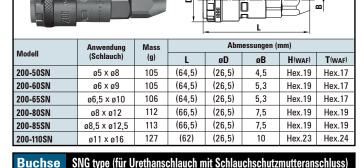

Druck-Volumenstrom-Kennlinien

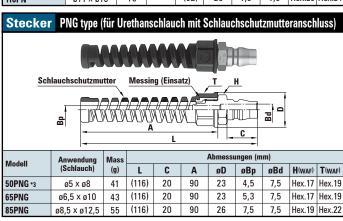

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatu

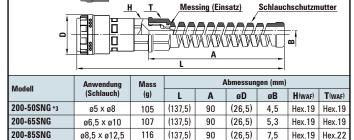

Buchse

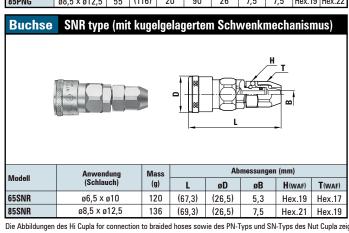
Н

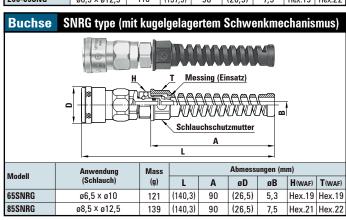





SN type (für Urethanschlauchanschluss)




	Anwendung		Gehäusewerkstoff • Masse (g)		Abme	ssungen	(mm)	
Modell	(Schlauch)	Steel	Stainless steel	L	øD	øB	H(WAF)	T(WAF
50SN	ø5 x ø8	117	-	(60)	(26,5)	4,5	Hex.19	Hex.1
60SN	ø6 x ø9	115	-	(59,5)	(26,5)	5,3	Hex.19	Hex.1
65SN	ø6,5 x ø10	115	110	(59,5)	(26,5)*2	5,3	Hex.19	Hex.1
80SN	ø8 x ø12	120	114	(61,5)	(26,5)*2	7,5	Hex.19	Hex.1
85SN	ø8,5 x ø12,5	120	115	(61,5)	(26,5)*2	7,5	Hex.19	Hex.1
110SN	ø11 x ø16	153	-	(64,5)	(26,5)	10	Hex.23	Hex.2



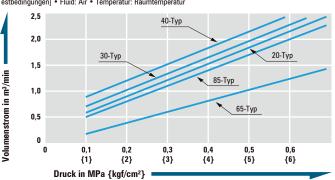
Lock Cupla 200

Luftleitungskupplung mit Hülsen-Sicherheitsverriegelung

Push-to-connect-Verfahren. Hinzugefügt wurde ein einfaches Verschlussdesign für mehr Sicherheit!

- Der Verriegelungsmechanismus verhindert nach dem Anschließen ein ungen zwischen Schläuchen.
- Einfaches Zusammenstecken von Stecker und Buchse für den Anschluss. Die einfache Handhabung verbessert die Arbeitseffizienz.
- Der kugelgelagerte Schwenkmechanismus verhindert Schlauchverdrehungen und entlastet die Haltehände (SNRG-Typ).
- Zur Montage am Schlauch einfach über den Nippel schieben und die Mutter anziehen (SNRG-Typ).
- Schlauchschutzmutter gegen Abknicken des Schlauchs serienmäßig (SNRG-Typ).
- Der niedrige Druckverlust des Ventils sorgt für einen verbesserten Volumenstrom.

Anwendungsbeispiel **Anwendbares Fluid** Druckluftwerkzeuge, Druckluftgeräte, diverse Luftrohrleitungen


Eignung für Vakuum

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

Min. Querschnittsfläche (mm²)									mm²)		
Stecker Lock Cupla 200	17PH	20PH	30PH	40PH	10PM	20PM	30PM	40PM	20PF	30PF	40PF
L200-20SH	16	20	20	20	13	20	20	20	20	20	20
L200-30SH	16	20	41	41	13	41	41	41	41	41	41
L200-40SH	16	20	41	41	13	41	41	41	41	41	41
L200-20SM	16	20	41	41	13	41	41	41	41	41	41
L200-30SM	16	20	41	41	13	41	41	41	41	41	41
L200-40SM	16	20	41	41	13	41	41	41	41	41	41
L200-20SF	16	20	41	41	13	41	41	41	41	41	41
L200-30SF	16	20	41	41	13	41	41	41	41	41	41
L200-40SF	16	20	41	41	13	41	41	41	41	41	41
L200-65SNRG	16	20	20	20	13	20	20	20	20	20	20
L200-85SNRG	16	38	38	38	13	38	38	38	38	38	38

Druck-Volumenstrom-Kennlinien

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur

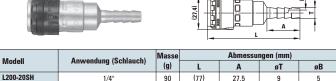
Technische Daten								
Gehäus	sewerkstoff	Steel (Chrome plated)						
Größe	Gewinde und Schlauchstutzen		1/4", 3/8", 1/2"					
arono	SNRG-Typ	Für Schläuche mit ø6,5 mm x ø10 mm, ø8,5 mm x ø12,5 mm						
Drucke	inheit	MPa	kgf/cm²	Bar	PSI			
Betriebsdruck		1,5	15	15	218			
	ngsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Betriek	stemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +60 °C	Standardmaterial			

Max. Anzugsdrehmoment, Anzugsdrehmomentbereich Nm {kgf·cm							
Verbindungsart	Gewinde			Schlauchschutzmutter			
Anwendbare Größe	1/4"	3/8"	1/2"	ø6,5 mm x ø10mm	ø8,5 mm x ø12,5mm		
Drehmoment	14 {143}	22 {224}	60 {612}	5 bis 6 {51 bis 61}	7 bis 8 {71 bis 82}		

Zur Montage auf einem Urethanschlauch schieben Sie diesen auf den Schlauchstutzen und ziehen Sie die Mutter fest, bis sie bindig mit dem Schlauchstutzen abschließt. Es wird empfohlen, die Innenseite der Mutter (Gewindeteil und Schlauchkontaktteil) zu fetten, um das Anziehen zu erleichtern.

Strömungsrichtung

Das Fluid muss von der Buchse zum Stecker strömen.



Austauschbarkeit

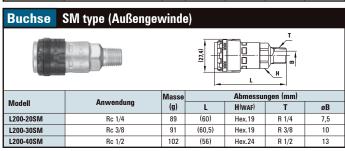
L200-40SH

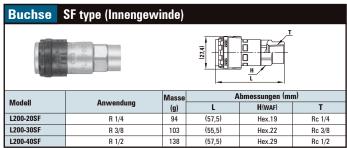
Kann mit Steckern für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit den entsprechenden Modellen der Hi Cupla-Serie

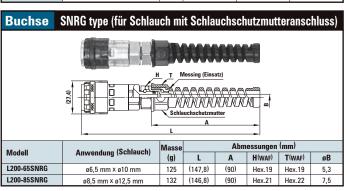
Modelle und Abmessungen WAF: WAF steht für Schlüsselweite ("Width Across Flats"). SH type (Schlauchstutzen)

92

104


(79)


(79,5)

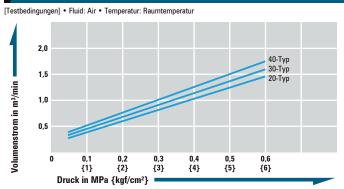

32

11,3

10

Hi Cupla **Two Way Type**

Für bidirektionalen Druckluftstrom



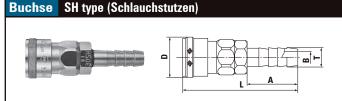
Im gekoppelten Zustand strömt die Luft in beide Richtungen, d. h. von der Stecker- oder von der Buchsenseite aus. **Ideal für den Anschluss von** Werksdruckluftleitungen an pneumatische Geräte.

- Kann mit Steckern für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden und ermöglicht im gekoppelten Zustand den Fluidstrom von der Stecker- oder der Buchsenseite aus.
- · Große Auswahl an Anschlüssen, z. B. von Anschlüssen an Luftleitungen im Werk bis hin zu einzelnen pneumatischen Geräten.
- Kritische Konstruktionsteile werden wärmebehandelt, um die Festigkeit und somit die Lebensdauer und Verschleißfestigkeit zu erhöhen.
- Erhältlich in verschiedenen Größen und Endkonfigurationen für eine Vielzahl von Anwendungen.

Druck-Volumenstrom-Kennlinien

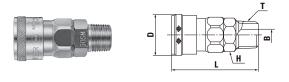
Genause	werkstorr	Steel (Unrome plated)					
Größe	Gewinde	1/4", 3/8", 1/2"					
dioise	Schlauchstutzen	Für Schläuche mit ø6,5 mm x ø10 mm, ø8,5 mm x ø12,5 mm					
Druckein	heit	MPa	kgf/cm ²	bar	PSI		
Betriebs	druck	1,5	1,5 15 15				
Diahama	torial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke		
•	smaterial temperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial		
		Fluoro rubber	FKM (X-100)	20 °C his + 180 °C	Sonderanfertigung		

Max. Anzugsdrehmoment Nm {kgf						
Größe (Gewinde)	1/4"	3/8"	1/2"			
Drehmoment	14 {143}	22 {224}	60 {612}			


Strömungsrichtung

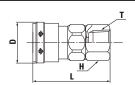
Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Kann mit Steckern für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit den entsprechenden Modellen der Hi Cupla-Serie.


Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

Modelle und Abmessungen WAF: WAF steht für Schlüsselweite ("Width Across Flats").

Madall	Anwendung	Masse		Abmessungen (mm)						
Modell	(Schlauch)	(g)	L	øD	Α	øT	øB			
TW20SH	1/4"	98	(72,5)	(26,5)	30	9	5			
TW30SH	3/8"	102	(76,5)	(26,5)	34	11,3	7,5			
TW40SH	1/2"	117	(78,5)	(26,5)	36	15	9			


Buchse SM type (Außengewinde)

Modell	A	Masse		Al	omessungen (n	nm)	
iviodeli	Anwendung	(g)	L	øD	H(WAF)	T	øB
TW20SM	Rc 1/4	95	(55,5)	(26,5)	Hex.19	R 1/4	7
TW30SM	Rc 3/8	109	(56,5)	(26,5)	Hex.19	R 3/8	8
TW40SM	Rc 1/2	116	(59,5)	(26,5)	Hex.23	R 1/2	9

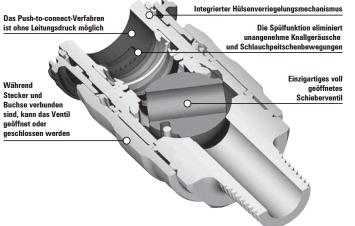
Buchse SF type (Innengewinde)

NA II	A	Masse	Abmessungen (mm)					
Modell	Anwendung	(g)	L	øD	H(WAF)	T		
TW20SF	R 1/4	95	(49,5)	(26,5)	Hex.19	Rc 1/4		
TW30SF	R 3/8	96	(50,5)	(26,5)	Hex.21	Rc 3/8		
TW40SF	R 1/2	137	(52,5)	(26,5)	Hex.29	Rc 1/2		

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende "Anleitungsblatt" durch

Full-Blow Cupla

Luftleitungskupplung mit geringem Druckverlust und hohem Volumenstrom



Einzigartiger, vollständig offener Schiebermechanismus, der einen geringen **Druckverlust und einen hohen Volumenstrom** ermöglicht, wodurch das erforderliche Quellluftvolumen reduziert wird.

- Der Volumenstrom erhöht sich verglichen mit herkömmlichen Cuplas um bis zu 40 %.
- Beim An- und Abkuppeln wird das Ventil geschlossen, was ein An- und Abkuppeln unter Null-Leitungsdruck ermöglicht.
- Wenn die Hülse der Buchse wieder in ihre ursprüngliche Position gebracht wird, gibt der Spülmechanismus den Restluftdruck im Stecker frei, wodurch unangenehme Knallgeräusche und Schlauchpeitschenbewegungen beim Trennen eliminiert werden.
- Ein integrierter Hülsenverriegelungsmechanismus verhindert ein unbeabsichtigtes Lösen des Cuplas und gewährleistet so einen sicheren Betrieb.
- Das Ventil kann geöffnet und geschlossen werden, während Buchse und Stecker miteinander verbunden sind.
- Das Gewicht reduziert sich im Vergleich zu herkömmlichen Cuplas um 30 bis 45 %. Hinweis: Die direkte Montage von Full-Blow Cuplas an schlagenden und vibrierenden Werkzeugen sollte vermieden werden.

Tech	Technische Daten							
Gehäus	sewerkstoff	erkstoff Aluminum alloy						
	Gewinde und Schlauchstutzen	n 1/4", 3/8", 1/2" Für polyurethane hose ø6,5 mm x ø10 mm, ø8 mm x ø12 mm Für polyurethane hose ø8,5 mm x ø12,5 mm, ø11 mm x ø16 mm						
Größe	SN type							
Drucke	inheit	MPa	kgf/cm²	Bar	PSI			
Betrieb	sdruck	1,5	15	15	218			
Dichtu	ngsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Betrieb	stemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +60 °C	Standardmaterial			

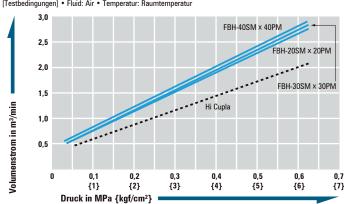
Max. Anzugsdrehmoment Nm {kgf ·							
Größe (Gewinde)	1/4"	3/8"	1/2"				
Drehmoment	14 {143}	22 {224}	60 {612}				

	(,	()	()
Anzugsdrehmomentber	eich		Nm {kgf·cm}
	SN Type)	

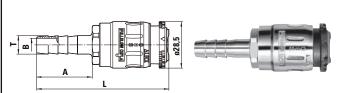
9 bis 11 {92 bis 112}

Zur Montage auf einem Urethanschlauch schieben Sie diesen auf den Schlauchstutzen und ziehen Sie die Mutter fest, bis sie bündig mit dem Schlauchstutzen abschließt.

Es wird empfohlen, die Innenseite der Mutter (Gewindeteil und Schlauchkontaktteil) zu fetten, um das Anziehen zu erleichtern

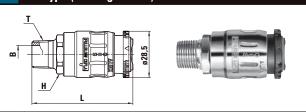

Strömungsrichtung Das Fluid muss von der Buchse zum Stecker strömen.

Kann mit Steckern für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit allen anderen Produkten der Hi Cupla-Serie. Bitte beachten Sie die Seite "Austauschbarkeit der Hi Cupla-Serie".

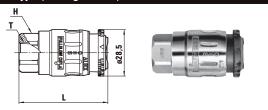

Nicht austauschbar mit einigen Steckern aus Kunststoff des Hi Cupla 250 (Auslaufartikel).

Min. Quer	schnit	tsfläcl	he							(1	mm²)
Stecker Buchse	17PH	20PH	30PH	40PH	10PM	20PM	30PM	40PM	20PF	30PF	40PF
FBH-20SH	16	20	24	24	13	24	24	24	24	24	24
FBH-30SH	16	20	44	44	13	44	44	44	44	44	44
FBH-40SH	16	20	44	44	13	44	44	44	44	44	44
FBH-20SM	16	20	44	44	13	44	44	44	44	44	44
FBH-30SM	16	20	44	44	13	44	44	44	44	44	44
FBH-40SM	16	20	44	44	13	44	44	44	44	44	44
FBH-20SF	16	20	44	44	13	44	44	44	44	44	44
FBH-30SF	16	20	44	44	13	44	44	44	44	44	44
FBH-40SF	16	20	44	44	13	44	44	44	44	44	44
FBH-65SN	16	20	24	24	13	24	24	24	24	24	24
FBH-80SN	16	20	44	44	13	44	44	44	44	44	44
FBH-85SN	16	20	44	44	13	44	44	44	44	44	44
FBH-110SN	16	20	44	44	13	44	44	44	44	44	44

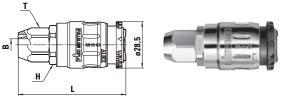
Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.



Buchse SH type (Schlauchstutzen)


Modell	Anwendung	Masse	Abmessungen (mm)						
(Schla	(Schlauch)	(g)	L	Α	øT	øB			
FBH-20SH	1/4"	70	(77)	30	9	5,5			
FBH-30SH	3/8"	74	(81)	34	11,3	8			
FBH-40SH	1/2"	85	(83)	36	15	10			

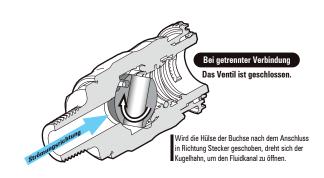
Buchse SM type (Außengewinde)

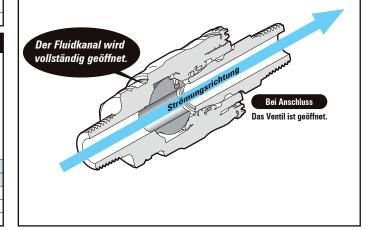

Modell	Anwendung	Masse	Abmessungen (mm)						
Wodeli Alix	Anwendung	(g)	L	H(WAF)	T	øB			
FBH-20SM	Rc 1/4	71	(62)	Hex.22	R 1/4	8			
FBH-30SM	Rc 3/8	75	(62)	Hex.22	R 3/8	11			
FBH-40SM	Rc 1/2	86	(66)	Hex.22	R 1/2	15			

Buchse SF type (Innengewinde)

Modell	Anuranduna	Masse	Admessungen (mm)					
Wouch	Anwendung	(g)	L	H(WAF)	T			
FBH-20SF	R 1/4	77	(54,5)	Hex.22	Rc 1/4			
FBH-30SF	R 3/8	69	(54,5)	Hex.22	Rc 3/8			
FBH-40SF	R 1/2	90	(61)	Hex.26	Rc 1/2			

Buchse SN type (für Urethanschlauchanschluss)

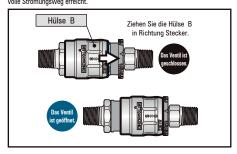



Modell	Anwendung (Schlauch)	Masse	Abmessungen (mm)						
iviodeli	Anwendung (Schlauch)	(g)	L	H(WAF)	T(WAF)	øB			
FBH-65SN	ø6,5 mm x ø10 mm	64	(64)	Hex.22	Hex.17	5,5			
FBH-80SN	ø8 mm x ø12 mm	67	(66)	Hex.22	Hex.19	7,5			
FBH-85SN	ø8,5 mm x ø12,5 mm	68	(66)	Hex.22	Hex.19	7,5			
FBH-110SN	ø11 mm x ø16 mm	86	(71)	Hex.26	Hex.24	10			

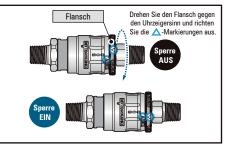
Eigenschaften des Full-Blow Cuplas

Biszu40%höherer **Volumenstrom**

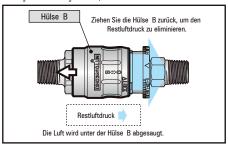
Der Druckverlust wird auf ein Minimum reduziert. Bis zu 40 % mehr Volumenstrom im Vergleich zu herkömmlichen Cuplas.



Funktionsweise


1. Ventil öffnen

Erst nach Verbindung mit dem Stecker können Sie die Buchsenhülse B in Richtung Stecker schieben, um das integrierte Ventil zu öffnen. Dann wird der volle Strömungsweg erreicht.


2. Hülse verriegeln

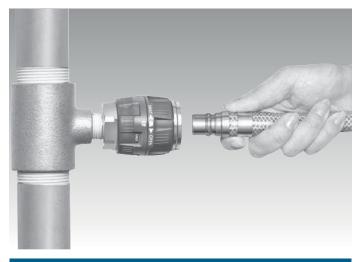
Drehen Sie den Flansch gegen den Uhrzeigersinn, um die Hülse B zu verriegeln. Ohne Entriegelung des Steckers ist keine Trennung möglich.

3. Restluft spülen

Um den Stecker zu lösen, drehen Sie zuerst den Flansch zum Entriegeln wieder in die Ausgangsposition zurück und ziehen Sie dann die Hülse B wieder in die Ausgangsposition. Das integrierte Ventil wird geschlossen, um den Restluftdruck zu eliminieren.

Purge Hi Cupla **PVR Type**

Luftleitungskupplung mit integrierter Restluftdruckentlastung



Der Anschluss kann unabhängig vom vorhandenen Druck in der Buchse problemlos erfolgen.

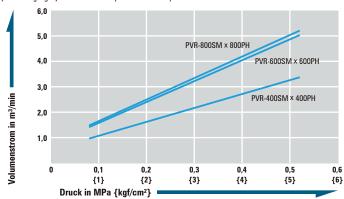
- Push-to-connect-Verfahren, Einfache Einhandbedienung.
- Ein integrierter Hülsenverriegelungsmechanismus verhindert ein unbeabsichtigtes Lösen des Cuplas und gewährleistet so einen sicheren Betrieb.
- Nach Abschluss der Hülsenverriegelung öffnet sich das Ventil zur Zuluft.
- Wenn die Hülse wieder in ihre Ausgangsposition zurückgedreht wird, ist das Ventil geschlossen und eliminiert den Restluftdruck im Stecker ohne unangenehme Knallgeräusche und Schlauchpeitschenbewegungen beim Trennen.
- Auch nach dem Anschluss ist eine Steuerung von Ventilöffnung/-schließung möglich.
- Der Volumenstrom steigt gegenüber dem Hi Cupla-Modell 400SM um ca. 20 %.
- Kann mit Steckern für die Hi Cupla-Modelle 400, 600 und 800 verbunden werden.

Technische Daten									
Gehäusewe	erkstoff	Z	Zinc alloy (teils Messing und andere)						
Größe	Gewinde		1/2",	3/4", 1"					
GIOISO	Schlauchstutzen	en 1/2"-, 3/4"-, 1"-Schlauch							
Druckeinhe	it	MPa kgf/cm² Bar PS			PSI				
Betriebsdru	ck	1,5	15	15	218				
Diahtumusus	B		Kennzeichnung	Betriebstemperaturbereich	Vermerke				
Dichtungsmaterial Betriebstemperaturbereich		Nitrile rubber Hydrogenated nitrile rubber	NBR (SG)	-20 °C bis +60 °C	Standardmaterial				

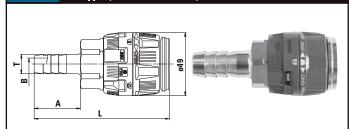
Max. Anzugsdrehmoment Nm {kgf						
Größe (Gewinde)	1/2"	3/4"	1"			
Drehmoment	30 {306}	50 {510}	65 {663}			

Strömungsrichtung Das Fluid muss von der Buchse zum Stecker strömen.

Austauschbarkeit

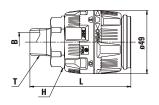

Kann mit Steckern für die Hi Cupla-Modelle 400, 600 und 800 verbunden werden.

Min. Quers	Min. Querschnittsfläche (mm²)											
Modell	400PH	600PH	800PH	400PM	600PM	800PM	400PF	600PF	800PF			
PVR-400SH	64	71	71	71	71	71	71	71	71			
PVR-600SH	64	116	116	116	116	116	116	116	116			
PVR-800SH	64	116	116	116	116	116	116	116	116			
PVR-400SM	64	116	116	116	116	116	116	116	116			
PVR-600SM	64	116	116	116	116	116	116	116	116			
PVR-800SM	64	116	116	116	116	116	116	116	116			
PVR-400SF	64	116	116	116	116	116	116	116	116			
PVR-600SF	64	116	116	116	116	116	116	116	116			
PVR-800SF	64	116	116	116	116	116	116	116	116			


Eignung für Vakuum

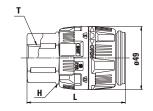
Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur



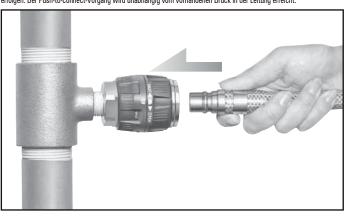
Buchse SH type (Schlauchstutzen)

Modell	Anwendung	nwendung Masse		Abmessungen (mm)				
Wodell	(Schlauch)	(g)	L	Α	øΤ	øB		
PVR-400SH	1/2"	380	(105)	36	15	9,5		
PVR-600SH	3/4"	361	(109)	45	21	14		
PVR-800SH	1"	440	(118)	55	27	16		

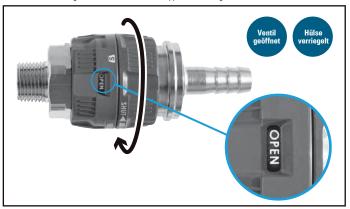

Buchse SM type (Außengewinde)

Modell	Anwendung Masse			Abmessungen (mm)				
Modell	Anwending	(g)	L	H(WAF)	T	øB		
PVR-400SM	Rc 1/2	327	(78)	Hex.35	R 1/2	14		
PVR-600SM	Rc 3/4	345	(82)	Hex.35	R 3/4	18		
PVR-800SM	Rc 1	374	(84)	Hex.35	R 1	24		

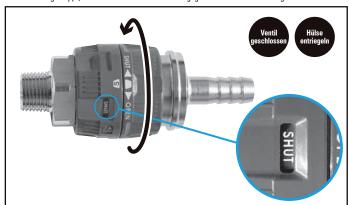
Buchse SF type (Innengewinde)



Modell	Anusanduna	Masse	Abmessungen (mm)				
Wodell	Anwendung	(g)	L	H(WAF)	Т		
PVR-400SF	R 1/2	394	(76)	Hex.35	Rc 1/2		
PVR-600SF	R 3/4	370	(77)	Hex.35	Rc 3/4		
PVR-800SF	R 1	440	(82)	Hex.41	Rc 1		


Funktion des Purge Hi Cuplas PVR Type

Der Vorgang der Ventilöffnung/-schließung und die Verbindung von Stecker und Buchse können unabhängig voneinander erfolgen. Der Push-to-connect-Vorgang wird unabhängig vom vorhandenen Druck in der Leitung erreicht.


2. Öffnen Sie das Ventil und verriegeln Sie die Hülse.

Durch Drehen des Betätigungsrings wird das Ventil in der Buchse geöffnet, um Luft zuzuführen und die Hülse zur Verhinderung eines versehentlichen Entkuppelns zu verriegeln.

3. Ventil schließen und Hülse entriegeln

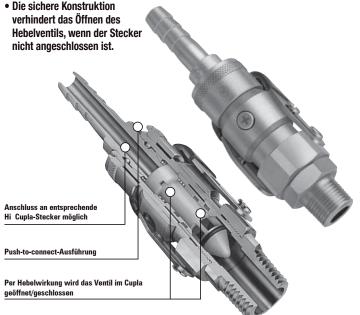
Durch Zurückdrehen des Betätigungsrings in die Ausgangsstellung werden das Ventil geschlossen und der Luftstrom gestoppt, der Restluftdruck im Stecker freigegeben und die Hülse entriegelt.

4. Trennung der Verbindung

Das Abkuppeln kann ohne unangenehme Knallgeräusche und Schlauchpeitschenbewegungen erfolgen, da kein Restluftdruck im Inneren des Steckers vorhanden ist.

Purge Hi Cupla

Luftleitungskupplung mit Restdruckentlastung



- Zum Verbinden unabhängig vom Innendruck in der Buchse einfach den Stecker einstecken.
- Auch nach dem Anschluss ist per Hebelbetätigung eine perfekte Kontrolle über das Öffnen/Schließen des Ventils möglich.
- Beim Abkuppeln wird durch die Hebelwirkung der Restluftdruck im Stecker ohne unangenehme Knallgeräusche und Schlauchpeitschenbewegungen abgelassen.

Betrieb

Einfach den Stecker in die Buchse

(In dieser Phase ist das Ventil der Buchse nicht geöffnet.)

Durch Herunterdrehen des Hebels werden das Ventil geöffnet und der Fluidstrom ermöglicht.

(Der heruntergedrehte Hebel wirkt als Hülsenstopper und verhindert ein Lösen.)

Wird der Hebel nach oben gedreht, wird der Restluftdruck im Stecker beim Trennen der Verbindung ohne unangenehme Knallgeräusche und Schlauchpeitschenbewegungen abgelassen. In dieser Phase ist das Ventil der Buchse noch geschlossen.

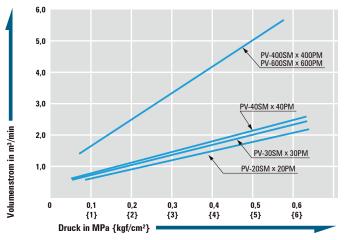
Technische Daten Gehäusewerkstoff Brass (Chrome plated) Größe (Gewinde) 1/4", 3/8", 1/2", 3/4" Druckeinheit MP: kaf/cm² Betriebsdruck 1.0 10 10 145 nzeichnung **Dichtungsmaterial** Betriebstemperaturbereich Nitrile rubber NBR (SG) 20 °C bis +60 Standardmaterial

Max. Anzugsdrehmoment Nm {kgf⋅cm}									
Modell	PV-20SM	PV-30SM	PV-40SM	PV-400SM	PV-600SM				
Drehmoment	9 {92}	11 {112}	30 {306}	30 {306}	50 {510}				

Strömungsrichtung

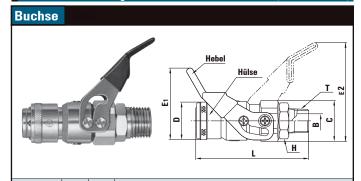
Das Fluid muss von der Buchse zum Stecker strömen.

Austauschbarkeit


Die Modelle 20, 30 und 40 können an die Stecker der Hi Cupla-Modelle 10, 17, 20, 30 und 40 angeschlossen werden. Die Modelle 400 und 600 können an die Stecker der Hi Cupla-Modelle 400. 600 und 800 angeschlossen werden. Austauschbar mit den entsprechenden Modellen der Hi Cupla-Serie.

Min. Querschnittsfläche (mm²)								
Modell	PV-20SM	PV-30SM	PV-40SM	PV-400SM	PV-600SM			
Min. Querschnittsfläche	38	41	41	94	94			

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.


Druck-Volumenstrom-Kennlinien

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur

Modelle und Abmessungen

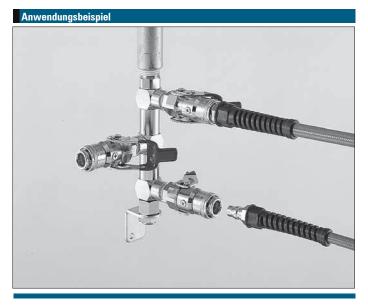
WAF: WAF steht für Schlüsselweite ("Width Across Flats")

ı	Modell	A	Masse	Abmessungen (mm)							
Anwen	Anwendung	(g)	L	øD	E ₁	E ₂	H(WAF)	øC	Т	øB	
I	PV-20SM	Rc 1/4	225	(79)	26,5	(50,5)	(70)	Hex.22	29	R 1/4	7
I	PV-30SM	Rc 3/8	229	(80)	26,5	(50,5)	(70)	Hex.22	29	R 3/8	10
I	PV-40SM	Rc 1/2	235	(82)	26,5	(50,5)	(70)	Hex.22	29	R 1/2	14
I	PV-400SM	Rc 1/2	411	(94)	35	(61,5)	(82)	Hex.30	37,5	R 1/2	13
	PV-600SM	Rc 3/4	424	(97)	35	(61,5)	(82)	Hex.30	37,5	R 3/4	18

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende "Anleitungsblatt" d

Purge Line Cupla

Einfacher Luftkupplungsverteiler mit Restdruckentlastung



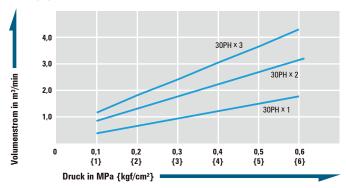
Der Restdruck kann durch eine einfache Hebelumdrehung abgelassen werden. Sehr leichtgängiges An- und Abkuppeln!

- Nur ein Arbeitsgang, einfach den Stecker einstecken, um die Verbindung unabhängig vom Innendruck in der Buchse vorzunehmen.
- Kein unangenehmes Geräusch der Druckluftentladung und keine Schlauchpeitschenbewegungen beim Trennen, um einen sicheren Betrieb zu
- Sichere Ausführung Buchsenventil öffnet oder schließt nur bei angeschlossenem Stecker.
- Auch nach dem Anschluss wird das Ventil durch eine Hebelumdrehung geöffnet bzw. geschlossen, wodurch der Luftstrom oder die Absperrung der Leitung perfekt gesteuert wird.
- Ermöglicht die gleichzeitige Luftzufuhr von einer einzigen Luftleitung zu drei Auslässen. (Ein Purge Hi Cupla mit einzelnem Auslass ist ebenfalls erhältlich – siehe die Seiten über den Purge Hi Cupla für weitere Informationen.)

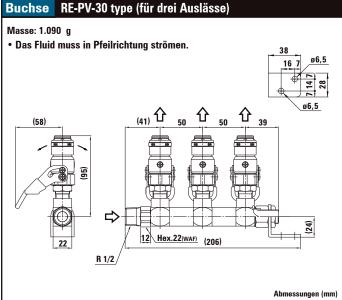
Technische Daten							
Gehäusewerkstoff	Brass (Chrome plated)						
Größe	Netzanschluss	Netzanschluss R 1/2					
01000	Auslass	1)					
Druckeinheit	MPa	kgf/cm ²	Bar	PSI			
Betriebsdruck	1,0	10	10	145			
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	20 °C bis +60 °C	Standardmaterial			

Max. Anzugsdrehmome	nt
Größe (Gewinde)	1/2"
Drehmoment	30 {306}

Das Fluid muss von der Einlassöffnung zu den Auslassöffnungen strömen. Bitte beachten Sie die Strömungsrichtungen (Pfeile) unter "Modelle und Abmessungen".


Kann mit Steckern für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit den entsprechenden Modellen der Hi Cupla-Serie.

Min. Querschnittsfläche	(mm²)
Min. Querschnittsfläche	41


Eignung für Vakuum

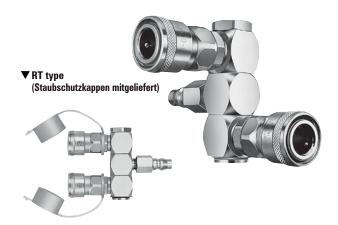
Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

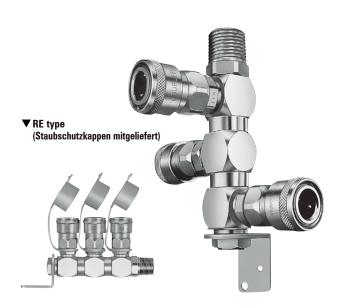
Druck-Volumenstrom-Kennlinien

Modelle und Abmessungen WAF: WAF steht für Schlüsselweite ("Width Across Flats")


Rotary Line Cupla

Einfacher Aufbau der Luftleitungskupplungen am Freilaufverteiler





- Mehrere Auslässe von einer einzigen Luftversorgungsquelle stehen zur Verfügung.
- Seitliche Luftauslässe sind in jeden Winkel drehbar. Mögliche Schlauchverdrehungen können durch den Schwenkmechanismus der Cupla-Komponenten eliminiert werden.
- Wählen Sie je nach Anwendung den RT type (2 Auslässe) oder den RE type (3 Auslässe).

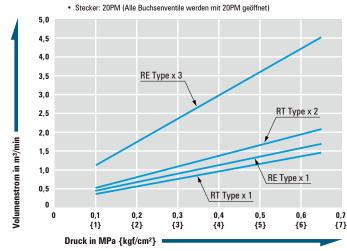
Technische Daten							
Gehäusewerkstoff	Gehä	Gehäuse: Brass (Chrome plated), Cupla: Steel (Chrome plated)					
Modell	RT-Typ	(für zwei	Abzweigleitungen)	RE-Typ	RE-Typ (für drei Abzweigleitungen)		
Größe	Netzanschluss	thluss Hi Cupla-Stecker 20PF			R 1/2		
	Auslass	Auslass 2 Buchsen für Hi Cupla-Modell 20		Auslass	3 Buchsen für Hi Cupla-Modell 20		
Druckeinheit	М	Pa	kgf/cm²	Ba	ar	PSI	
Betriebsdruck	1,5		15	15		218	
Dichtungsmaterial	Dichtungs	smaterial	Kennzeichnung	Betriebstemperaturbereich		Vermerke	
Betriebstemperaturbereich	Nitrile ı	rubber	NBR (SG)	-20 °C bis	+60 °C	Standardmaterial	

• Die Produkte werden mit Staubschutzkappen geliefert.

Max. Anzugsdrehmome	nt (RE Type) Nm {kgf·cm}
Größe (Gewinde)	1/2"
Drehmoment	30 {306}

Strömungsrichtung des Fluids Das Fluid muss von der Einlassöffnung zu den Auslassöffnungen strömen.

Austauschbarkei

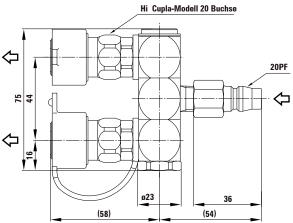

Kann mit Steckern für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit den entsprechenden Modellen der Hi Cupla-Serie.

Min. Querschnittsfläche							
Modell	RT type						
Min. Querschnittsfläche	3						

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

Druck-Volumenstrom-Kennlinien

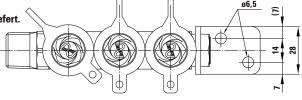
[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur

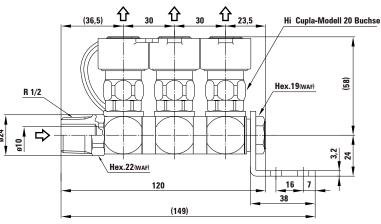


Buchse RT type (für zwei Auslässe)

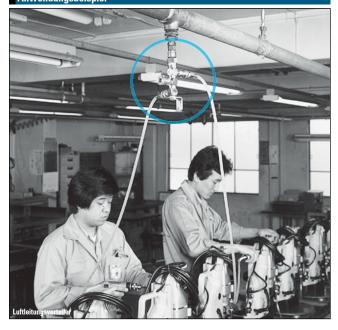
Masse: 490 g

- Das Fluid muss in Pfeilrichtung strömen.
- Das Produkt wird mit Staubschutzkappen geliefert.




Abmessungen (mm)

RE type (für drei Auslässe) Buchse


Masse: 660 g

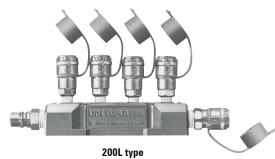
- Das Fluid muss in Pfeilrichtung strömen.
- Das Produkt wird mit Staubschutzkappen geliefert.

Abmessungen (mm)

Line Cupla

200T Type, 200L Type, 200S Type

Einfacher Aufbau der Luftleitungskupplung am Verteiler



Ermöglicht die gleichzeitige Aufnahme mehrerer Luftleitungen aus einer **Zuleitung!**

- Für eine einfache und sichere Verbindung müssen Sie lediglich den Stecker in die Buchse stecken.
- Mehrere Auslässe von einer einzigen Luftversorgungsquelle stehen zur Verfügung.
- Wählen Sie je nach Ihrer Anwendung entweder den Typ mit zwei Auslässen (Modell 200T), den Straight-Typ mit fünf Auslässen (Modell 200L) oder den Star-Typ mit fünf Auslässen (Modell 200S).

(wird mit dem Zubehör 400SH und Staubschutzkappen geliefert)

(wird mit dem Zubehör 400SH und Staubschutzkappen geliefert)

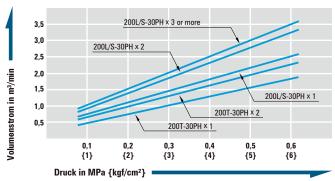
Technische Daten							
Gehäusewerkstoff		Gehäuse: Aluminum alloy, Cupla: Steel (Chrome plated)					
Größe	Netzanschluss	etzanschluss 200T-Typ: 20PM 200L-Typ/200S-Typ: 400PM					
dione	Auslass	Auslass 200T-Typ: 200-20SM 200L-Typ/200S-Typ: 200-20SM, 40SM					
Druckeinheit	MPa		kgf/cm²	Bar	PSI		
Betriebsdruck	1	,5	15	15 15			
Dichtungsmaterial	Dichtungsmaterial		Kennzeichnung	Betriebstemperaturbereich	Vermerke		
Betriebstemperaturbereich	Nitrile rubber		NBR (SG)	-20 °C bis +60 °C	Standardmaterial		

[•] Die Produkte werden mit Staubschutzkappen geliefert.

Strömungsrichtung Das Fluid muss von der Einlassöffnung zu den Auslassöffnungen strömen.

Austauschbarkeit

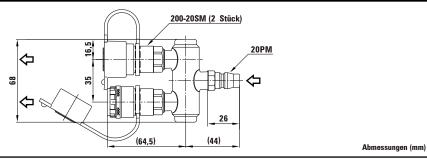
Kann mit Steckern für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit den entsprechenden Modellen der Hi Cupla-Serie


Min. Querschnitts	fläche (mm²)
Modell	200T type, 200L type, 200S type
Min. Querschnittsfläche	19

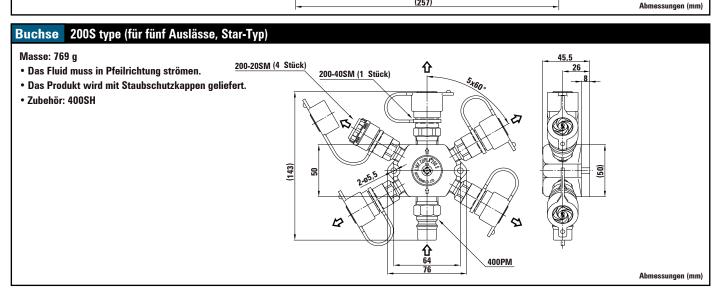
Eignung für Vakuum

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

Druck-Volumenstrom-Kennlinien

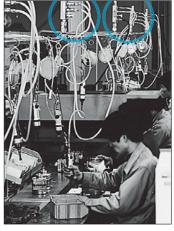

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur

Buchse 200T type (für zwei Auslässe)


Masse: 272 g

- Das Fluid muss in Pfeilrichtung strömen.
- Das Produkt wird mit Staubschutzkappen geliefert.

Buchse 200L type (für fünf Auslässe, in Reihe) Masse: 890 g • Das Fluid muss in Pfeilrichtung strömen. • Das Produkt wird mit Staubschutzkappen geliefert. • Zubehör: 400SH む 200-20SM (4 Stück) 400PM (62)200-40SM (1 Stk.) LING CUPLA 200L (Taranga manana Garana) 164


(257)

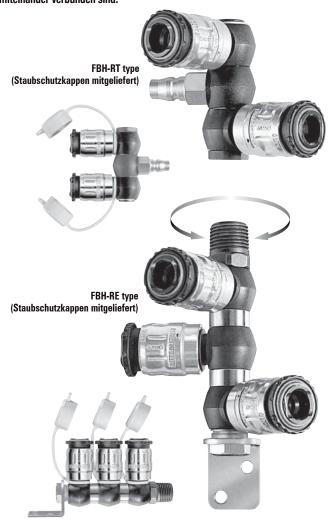
Anwendungsbeispiel

Optionale Elemente: Manometer und Ablasshahn

"Manometer" und "Ablasshahn" sind optional für die Montage am Line Cupla 200 erhältlich. (Siehe Seite 144) Manometer Ablasshahn UNG CUPLA 2000 Änderungen des Erscheinungsbilds zur Verbesserung ohne Vorankündigung vorbehalten

Rotary Full-Blow Line Cupla

Frei drehbare Abzweig-Luftleitungskupplung mit geringem Druckverlust und hohem Volumenstrom



Jeder Luftauslass kann unabhängig voneinander in jeden beliebigen Winkel gedreht werden.

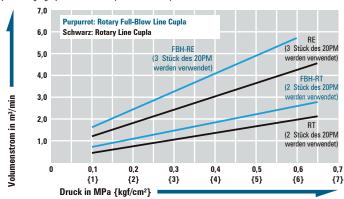
- Mehrere Auslässe von einer einzigen Luftversorgungsquelle stehen zur Verfügung.
- Seitliche Luftauslässe sind in jeden Winkel drehbar.
- Wählen Sie je nach Anwendung den RT type (2 Auslässe) oder den RE type (3 Auslässe).
- \bullet Der Volumenstrom steigt gegenüber herkömmlichen Cuplas um 40 % bis 50 %.
- Beim An- und Abkuppeln wird das Ventil geschlossen, was ein An- und Abkuppeln unter Null-Leitungsdruck ermöglicht.
- Wenn die Hülse der Buchse wieder in ihre Ausgangsstellung gebracht wird, gibt der Spülmechanismus den Restluftdruck im Stecker frei, wodurch beim Trennen unangenehme Knallgeräusche und die Schlauchpeitschenbewegungen eliminiert werden.
- Ein integrierter Hülsenverriegelungsmechanismus verhindert ein unbeabsichtigtes Lösen des Cuplas und gewährleistet so einen sicheren Betrieb.
- Das Ventil kann geöffnet und geschlossen werden, während Buchse und Stecker miteinander verbunden sind.

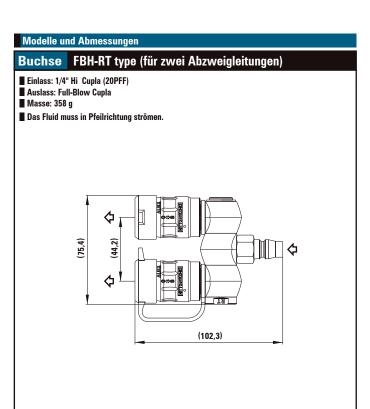
Technische Daten						
Gehäusewerkstoff		Zinc alloy				
	RT-Typ (für zwei Auslässe)			RE-Typ (für drei Auslässe)		
Größe	Netzanschluss	letzanschluss Stecker (20PFF) Ne		Netzanschluss		R 1/2
	Auslass	ass Full-Blow Cupla		Auslass	Full-Blow Cupla	
Druckeinheit	M	Pa	kgf/cm²	В	ar	PSI
Betriebsdruck	1,	5	15	1	5	218
Dichtungsmaterial	Dichtung	smaterial	Kennzeichnung	Betriebstemperaturbereich		Vermerke
Betriebstemperaturbereich	Nitrile	rubber	NBR (SG)	-20 °C bi	s +60 °C	Standardmaterial

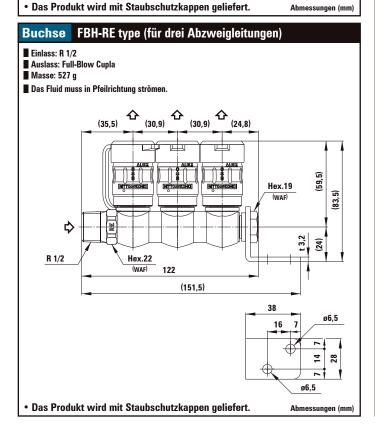
[•] Das Produkt wird mit Staubschutzkappen geliefert.

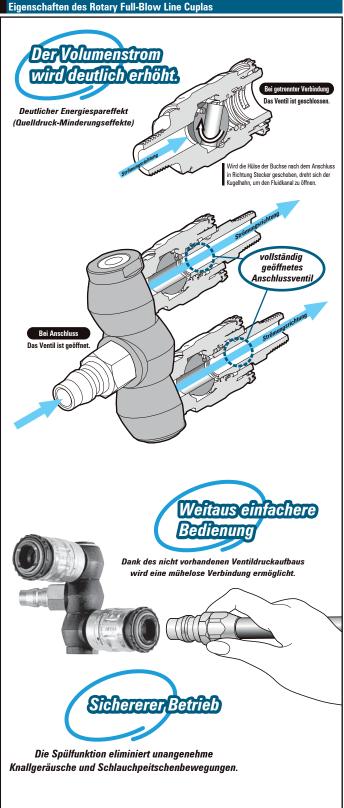
Max. Anzugsdrehmome	ent (FBH-RE-Typ) Nm {	[kgf∙cm}
Größe (Gewinde)	1/2"	
Drehmoment	30 {306}	

Strömungsrichtung Das Fluid muss von der Einlassöffnung zu den Auslassöffnungen strömen.

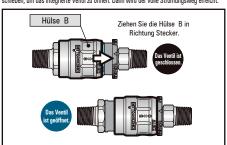

Kann mit Steckern für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit allen anderen Produkten der Hi Cupla-Serie. Bitte beachten Sie die Seite "Austauschbarkeit der Hi Cupla-Serie".


Nicht austauschbar mit einigen Steckern aus Kunststoff des Hi Cupla 250 (Auslaufartikel).


Min. Querschnittsfläche (n				
Modell	FBH-RT	FBH-RE		
Min. Querschnittsfläche	44	44		


Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

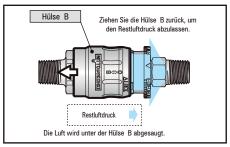
[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur • Stecker: 20PM



Funktionsweise

1. Ventil öff<u>ne</u>n

Erst nach Verbindung mit dem Stecker können Sie die Buchsenhülse B in Richtung Stecker schieben, um das integrierte Ventil zu öffnen. Dann wird der volle Strömungsweg erreicht.


2. Hülse verriegeln

Drehen Sie den Flansch gegen den Uhrzeigersinn, um die Hülse B zu verriegeln.

3. Restluft spülen

Um den Stecker zu lösen, drehen Sie zuerst den Flansch zum Entriegeln wieder in die Ausgangsposition zurück und ziehen Sie dann die Hülse B wieder in die Ausgangsposition. Das integrierte Ventil wird geschlossen, um den Restluftdruck zu eliminieren

Für Niederdruck

Hi Cupla Ace

Leichte Kunststoffkupplung mit automatischer Sicherheitsverriegelung für Luftleitungsanwendungen

Das Gewicht beträgt nur ein Viertel von Stahl-Hi Cupla und eine leichtgängige Steckverbindung wird erreicht. Automatische Hülsenverriegelung für einen sicheren Betrieb.

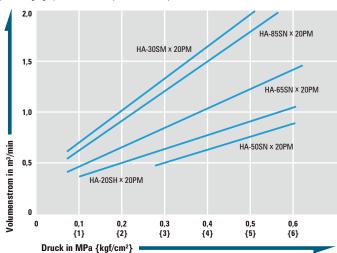
- Druckstufen vergleichbar mit Stahl-Cuplas.
- Ein integrierter "automatischer Verriegelungsmechanismus" verriegelt die Hülse beim Anschließen und verhindert so ein versehentliches Trennen.
- Zum Verbinden einfach den Stecker in die Buchse stecken.
- Für eine einfache Handhabung beträgt das Gewicht ein Viertel des Stahl-Hi Cuplas.
- Kann für Luft und Wasser verwendet werden.
- Im gekoppelten Zustand strömt die Luft in beide Richtungen, d. h. von der Stecker- oder von der Buchsenseite aus.
- Ebenfalls erhältlich sind Stecker und Buchse mit Schlauchschutzmutter (siehe die Seiten über NK Cupla Hose/NK Cupla Coil Hose für Details).

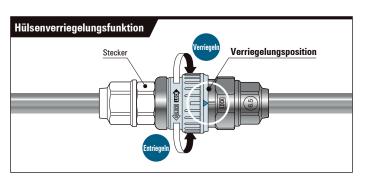
Technische Daten									
Gehäus	ewerkstoff		Engineering plastics (PBT, POM)			Engineering plastics			
	Gewinde und Schla	uchstutzen			1/4", 3/8"	/ 1/4", 3/8"			
Größe	PN type, SI (PNG type, SN		Für polyurethane hose ø5 mm x ø8 mm, ø6 mm x ø9 mm, ø6,5 mm x ø10 mm, ø8 mm x ø12 mm, ø8,5 mm x ø12,5 mm						
	T type)	HA-T-Typ	• Einla	ss: 20P-PLA • Auslass: HA-65S × 2				
	MPa		1,5		1,0 für Kunststoffstecker und Modell HA-				
Rotrich	sdruck	kgf/cm ²	15		10 für Kunststoffstecker und Modell HA-T				
Detilon	out u.c.k	Bar	15		10 für Kunststoffstecker und Modell HA-T				
		PSI	218		145 für Kunststoffstecker und Modell HA-T				
Dichtungsmaterial		Dichtungsmaterial	Kennz	eichnung	Betriebstemperaturbereich	Vermerke			
Betrieb	stemperaturbe	reich	Nitrile rubber	NB	R (SG)	-20 °C bis +60 °C	Standardmaterial		

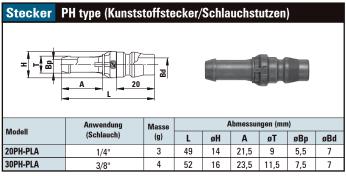
Anzugsdrehmomentbereich Nm {kgf·cn					
Modell	20/30SM 20/30PM	50/60/65SN 50/60/65PN	80/85SN 80/85PN	20PFF	
Drehmoment	2,5 bis 3,0 {26 bis 31}	1,6 bis 2,0 {16 bis 20}	2,2 bis 2,8 {22 bis 29}	2,0 bis 2,5 {20 bis 25}	

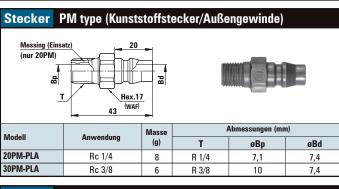
Strömungsrichtung Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

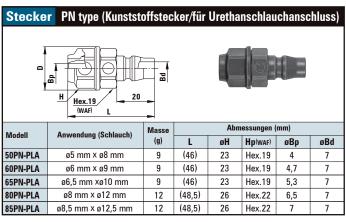
Austauschbarkeit

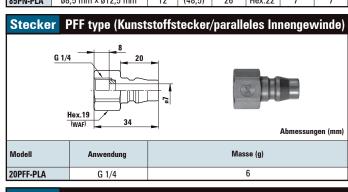

Kann mit Hi Cupla-Modellen 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit den Modellen der Nut Cupla-Serie und Hi Cupla-Serie außer den Modellen 400, 600 und 800.

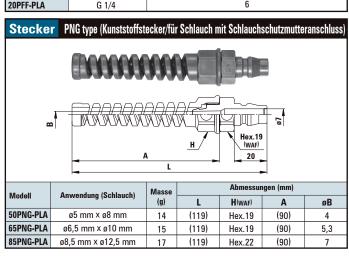

Eignung für Vakuum

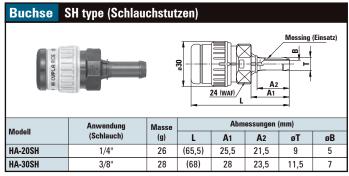

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

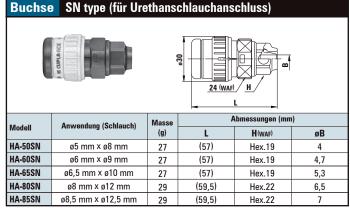

Druck-Volumenstrom-Kennlinien

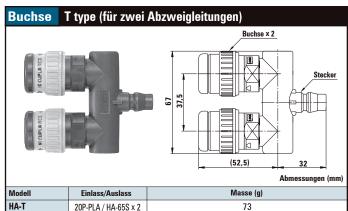

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur





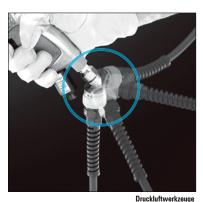






Rotary Plug

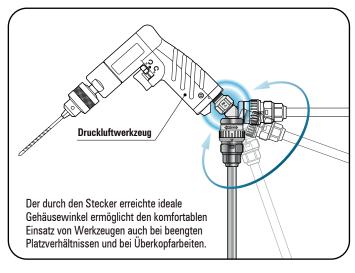
Für Druckluftwerkzeuge und -geräte

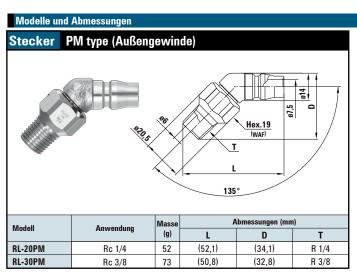


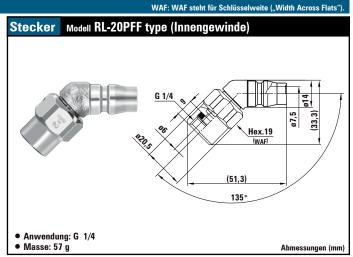
Neu entwickelte Drehfunktion ermöglicht 360°-Schwenken! Große Verbesserung bei der Handhabung von Druckluftwerkzeugen!

- Drehbarer Verschlussstutzen für Schlauchanschluss an Druckluftwerkzeuge und Druckluftgeräte.
- Passt in einem Winkel von 45° zum Werkzeug, wodurch lästige Versatzlasten durch den angeschlossenen Schlauch vermieden werden.
- Ideale Kompaktbauweise ermöglicht optimale Betriebsfähigkeit durch einfache Bauweise. Jetzt viel leichter und kleiner als herkömmliche Modelle.
- Neues staubdichtes Design für erhöhte Haltbarkeit.
- Für Drucklufttacker, Nagelgeräte, Schlagschrauber und andere Druckluftwerkzeuge.

Vergleich nach Aussehen Rotary Plug Twist Plua




Technische Daten							
Gehäusewerkstoff	Steel (Nickel plated)						
Größe (Gewinde)	1/4", 3/8"						
Druckeinheit	MPa kgf/cm² Bar PSI						
Betriebsdruck	1,5 15 15 218						
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Betriebstemperaturbereich	Nitrile rubber	NRR (SG)	20 °C his +80 °C	Standardmaterial			


Max. Anzugsdrehmoment Nm {kgf·cm				
Größe (Gewinde)	1/4"	3/8"		
Drehmoment	14 {143}	22 {224}		

Strömungsrichtung Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Kann mit Buchsen für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit den entsprechenden Modellen der Hi Cupla- und Nut Cupla-Serie.

Twist Plug

Für Druckluftwerkzeuge und -geräte



Verhindert das Verdrehen, Knicken oder Biegen von Schläuchen! Verbessert die Arbeitseffizienz erheblich!

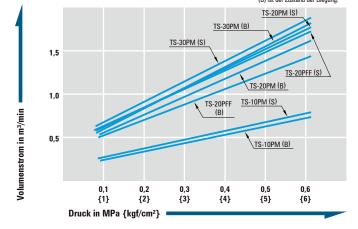
- Ein Stecker mit freiem Drallhals für Schlauchverbindungen zu Druckluftwerkzeugen und geräten.
- Die freie Winkelsteuerung (max. 70° flexibel) sorgt für komfortable Arbeitspositionen, selbst bei beengten Platzverhältnissen oder bei Überkopfarbeiten.
- Das flexible Teil ist mit selbstschmierenden Kunststoffen verstärkt, um ein sanftes Biegen und eine ausgezeichnete Haltbarkeit zu gewährleisten.
- Ein Staubschutz über dem flexiblen Teil verhindert das Eindringen von Schmutz und Spänen.

Druckluftwerkzeuge

Technische Daten							
Gehäusewerkstoff		Steel (Nickel plated)					
Größe (Gewinde)	1/8", 1/4", 3/8"						
Druckeinheit	MPa kgf/cm² Bar PSI						
Betriebsdruck	1,0	10	10	145			
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +60 °C	Standardmaterial			

Max. Anzugsdrehmoment Nm {kgf⋅cm}				
Größe (Gewinde)	1/8"	1/4"	3/8"	
Drehmoment	7 {71}	14 {143}	22 {224}	

Strömungsrichtung

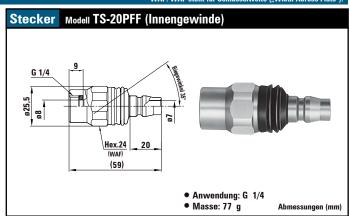

Kann mit Buchsen für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit den entsprechenden Modellen der Hi Cupla- und Nut Cupla-Serie.

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

Min. Querschnittsfläche (m					
Modell	TS-30PM	TS-20PFF			
Min. Querschnittsfläche	12,5	38,5	38,5	38,5	

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur

(S) ist der Zustand der Geradlinigkeit (B) ist der Zustand der Biegung.



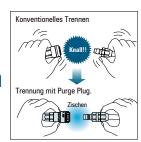
Modelle und Abmessungen

Stecker PM type (Außengewinde)

Modell	Anwenduna	Masse	A	Abmessungen (mn	n)
IVIOGEII	Anwending	(g)	L	øB	Т
TS-10PM	Rc 1/8	59	(57,5)	4	R 1/8
TS-20PM	Rc 1/4	59	(60)	8	R 1/4
TS-30PM	Rc 3/8	65	(60)	10	R 3/8

WAF: WAF steht für Schlüsselweite ("Width Across Flats").

Purge Plug


Für Luftleitungen mit Spülmechanismus

Beseitigt unangenehme Knallgeräusche und Schlauchpeitschenbewegungen beim Trennen des Cuplas.

- Beim Trennen des Cuplas wird der im steckerseitigen Schlauch verbleibende Druck allmählich abgebaut, ohne dass es zu unangenehmen Knallgeräuschen und Schlauchpeitschenbewegungen kommt.
- Das einzigartige Konzept der Sperrluft ermöglicht eine schnelle und leise Restdruckentlastung.
- Das einzigartige und doch einfache Absaugventil hält den Belastungen einer langen und wiederholten Benutzung gut stand.
- Die Funktion ist auch bei hohem Zulaufdruck oder mit langem Schlauch gewährleistet.

Hinweis: Dieses Produkt ist kein Rückschlagventil, um den Luftstrom vollständig zu stoppen.

Technische Daten						
Gehäusewerkstoff	Steel (Chrome plated)					
Größe	1/4", 3/8", 1/2" / Schlauch mit ø6,5 x ø10, ø8,5 x ø12,5					
Druckeinheit	MPa kgf/cm ² Bar PSI					
Betriebsdruck	1,0	10	10	145		
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke		
Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +60 °C	Standardmaterial		

Anzugsdrehmomentber	eich	Nm {kgf·cm}
Drehmoment	9 bis 11 {92 bis 112}	

Zur Montage auf einem Urethanschlauch schieben Sie diesen auf den Schlauchstutzen und ziehen Sie die Mutter fest, bis sie bündig mit dem Schlauchstutzen abschließt.

Es wird empfohlen, die Innenseite der Mutter (Gewindeteil und Schlauchkontaktteil) zu fetten, um das Anziehen zu erleichtern

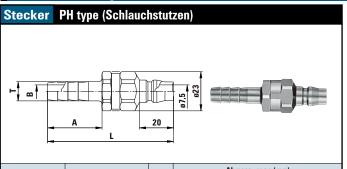
Strömungsrichtung

Austauschbarkei

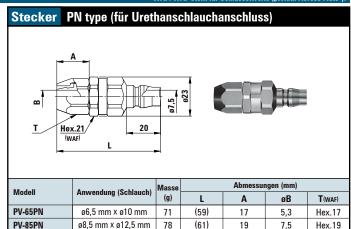

Kann mit Buchsen für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit den entsprechenden Modellen der Hi Cupla- und Nut Cupla-Serie.

Min. Querschnittsfläche (mm²)						
Modell PV-20PH PV-30PH PV-40PH PV-65PN PV-						
Min. Querschnittsfläche	19,6	44,1	50,4	22,0	44,1	

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.


Druck-Volumenstrom-Kennlinien

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur



Modelle und Abmessungen

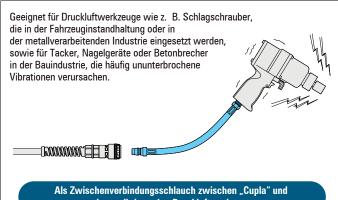
Madell	Anwendung (Schlauch)	Masse	Abmessungen (mm)				
Modell	Allwellully (Schlauch)	(g)	L	Α	øB	øΤ	
PV-20PH	1/4"	59	(70)	28	5	8,4	
PV-30PH	3/8"	62	(74)	32	7,5	11,3	
PV-40PH	1/2"	76	(77)	35	9	14,8	

Anti-vibration Plug Hose

Steckerschlauch für vibrierende und perkussive Druckluftwerkzeuge

Schützt den Cupla vor Erschütterungen durch vibrierende Werkzeuge und Schlagwerkzeuge.

- Optimiert die Lebensdauer und verhindert den Verschleiß des "Cuplas", indem starke Stöße durch angeschlossene vibrierende Werkzeuge absorbiert werden.
- Verhindert schwer wahrnehmbare Strömungsverluste durch "Cupla"-Verschleiß bei Dauervibrationen.
- Der flexible Gummischlauch ermöglicht freie und umfangreiche Werkzeugbewegungen.



Technische Daten					
Anwendbares Fluid		A	Air		
Modell	SHA-3-2R SHA-3-3R				
Größe (Gewinde)	R 1/4" R 3/8"			3/8"	
Einlass (Stecker)					
Druckeinheit	MPa	kgf/cm²	Bar	PSI	
Betriebsdruck	1,5	15	15	218	
Luftschlauch	Rubber hose for air				
Gesamtlänge	320 mm				
Min. Biegeradius		135	mm		

Max. Anzugsdrehmome	Nm {kgf·cm}	
Größe (Gewinde)	R 1/4	R 3/8
Drehmoment	14 {143}	22 {224}

Kann mit Buchsen für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit den entsprechenden Modellen der Hi Cupla- und Nut Cupla-Serie.

Anwendung

einem vibrierenden Druckluftwerkzeug.

Duster Cupla

Luftleitungskupplung mit Gebläsefunktion

Drei Funktionen in einem: Verbindung, Lufteinblasung, Lösung von Schlauchverdrehungen! Staubabblasung ohne Lösen des Werkzeugs!

- Der Hi Cupla ist mit einer kompakten Luftblasfunktion ausgestattet.
- Verbessert die Arbeitseffizienz durch Luftblasen, wobei das Werkzeug immer noch mit dem Schlauch verbunden ist.
- Der kugelgelagerte Schwenkmechanismus verhindert ein Verdrehen des Schlauchs und entlastet die Hand des Bedieners.
- Das spezielle Design des Druckluftschalters ist frei von Druckluft in der Leitung, sodass kein fester Druck erforderlich ist.
- Ebenso einfach ist die routinemäßige Wasserableitung aus der Luftleitung vor Beginn der täglichen Arbeit.

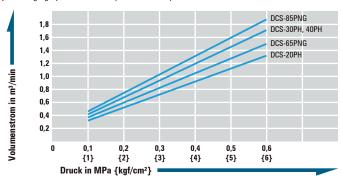
Das Foto zeigt eine simulierte Luftströmung

Technische Daten								
Gehäusewerkstoff	Gehäuse: A	Gehäuse: Aluminum alloy, Cupla: Steel (Chrome plated)						
Größe		Für polyurethane hose 1/4", 3/8", 1/2" Für polyurethane hose mit ø6,5 mm x ø10 mm, ø8,5 mm x ø12,5 mm						
Druckeinheit	MPa	kgf/cm²	Bar	PSI				
Betriebsdruck	1,0	10	10	145				
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke				
Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	20 °C bis +60 °C	Standardmaterial				

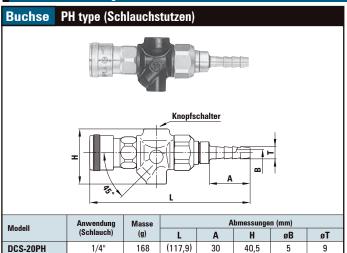
Anzugsdrehmomentber	Nm {kgf·cm}	
Modell	65PNG	85PNG
Drehmoment	5 bis 6 {51 bis 61}	7 bis 8 {71 bis 82}

Zur Montage auf einem Urethanschlauch schieben Sie diesen auf den Schlauchstutzen und ziehen Sie die Mutter fest, bis sie bündig mit dem Schlauchstutzen abschließt.

Es wird empfohlen, die Innenseite der Mutter (Gewindeteil und Schlauchkontaktteil) zu fetten, um das Anziehen zu erleichtern.


Strömungsrichtung Das Fluid muss von der Buchse zum Stecker strömen.

Kann mit Steckern für die Hi Cupla-Modelle 10, 17, 20, 30 und 40 verbunden werden. Austauschbar mit den entsprechenden Modellen der Hi Cupla- und Nut Cupla-Serie.


Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

Druck-Volumenstrom-Kennlinien

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur

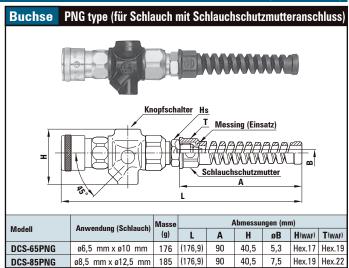
Modelle und Abmessungen

(121.9)

(123.9)

171

34


40.5

7.5

11.3

15

WAF: WAF steht für Schlüsselweite (Width Across Flats")

DCS-30PH

DCS-40PH

3/8

1/2"

NK Cupla Hose NK Cupla Coil Hose

Kupplungen mit Polyurethan-Schlauch für Luftleitungen

Hi Cupla Ace-Buchsen mit Polyurethan-Schläuchen sind jetzt Standard-Lagerartikel. Push-to-connect-Ausführung für eine schnelle Verrohrung.

- Die Hi Cupla Ace-Buchse ist auf einem biegsamen Polyurethanschlauch montiert, der sich durch hervorragende Haltbarkeit und Verschleißfestigkeit auszeichnet und mit einer Schlauchschutzmutter versehen ist, um ein mögliches Abknicken zu verhindern.
- Dank der Kunststoffbuchse besteht auch bei Kontakt mit Werkzeugen oder Geräten nur ein minimales Beschädigungsrisiko.
- Im gekoppelten Zustand strömt die Luft in beide Richtungen, d. h. von der Stecker- oder von der Buchsenseite aus.
- Spiralschläuche aus Polyurethan, die aus geraden Rohren hergestellt sind, haben eine Selbstrücklauffunktion.

Technische Daten								
Gehäusewerkstoff		Buchse: Engineering plastics (PBT, POM) Stecker: Steel (Chrome plated)						
Größe	ø5 mm x ø8 mm, ø6,5 mm x ø10 mm, ø8,5 mr							
	MPa	NK Cupla	Hose: 1,0	NK Cupla Coil Hose: 0,7				
Retriehsdruck	kgf/cm²	NK Cupla	Hose: 10	NK Cupla Coil Hose: 7				
Dottiobautuok	Bar	NK Cupla	Hose: 10	NK Cupla Coil Hose: 7				
	PSI	NK Cupla	Hose: 145	NK Cupla Coil Hose: 102				
Dichtungsmaterial Betriebstemperaturbereich		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
		Nitrile rubber	NBR (SG)	-5 °C bis +60 °C	Standardmaterial			

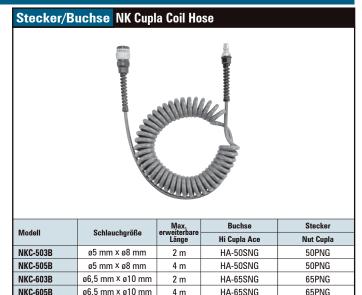
Anzugsdrehmomentber	Nm {kgf·cm}		
Größe	ø5 mm x ø8 mm	ø6,5 mm x ø10 mm	ø8,5 mm x ø12,5 mm
Drehmoment (Buchse)	1,6 bis 2,0 {16 bis 20}	1,6 bis 2,0 {16 bis 20}	2,2 bis 2,8 {22 bis 29}
Drehmoment (Stecker)	5 bis 6 {51 bis 61}	5 bis 6 {51 bis 61}	7 bis 8 {71 bis 82}

Strömungsrichtung

Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Austauschbarkeit

Austauschbar mit den Hi Cupla-Modellen 10, 17, 20, 30 und 40. Austauschbar mit den entsprechenden Hi Cupla-Modellen


Eignung für Vakuum

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

Modelle und Abmessungen/Schlauchlänge

Modell	0.111	0.1111"	Buchse	Stecker
iviodeli	Schlauchgröße	Schlauchlänge	Hi Cupla Ace	Nut Cupla
NKU-605B	ø6,5 mm × ø10 mm	5 m	HA-65SNG	65PNG
NKU-610B	ø6,5 mm x ø10 mm	10 m	HA-65SNG	65PNG
NKU-620B	ø6,5 mm x ø10 mm	20 m	HA-65SNG	65PNG
NKU-810B	ø8,5 mm × ø12,5 mm	10 m	HA-85SNG	85PNG
NKU-820B	ø8,5 mm × ø12,5 mm	20 m	HA-85SNG	85PNG

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende "Anleitungsblatt" durch

Für Niederdruck **Mini Cupla** Standardausführung für den Einsatz an Schweiß- und Brennschneidanlagen usw.

Exklusiv für Autogengeräte. Viele Varianten mit höherem Volumenstrom!

- Vom Zylinder bis zum Brenner sind alle Rohrverbindungen, die mit Schweißund Schneidgeräten verbunden sind, Push-to-connect-Verbindungen.
- Eine Doppellippendichtung verhindert kleinere Lecks während des Anschlusses. Sauerstoff- und Brenngas-Cuplas haben unterschiedliche Größen, um eine versehentliche Verbindung zu verhindern.
- Der Druckverlust wird minimiert, um einen höheren Volumenstrom zu erreichen.

Aufbau und Prinzip der Rückflussverhinderung

Stecker mit Rückstauventil

Die Stecker mit Rückstauventil in Mini Cuplas sind ausschließlich zum Gasschweißen/Brennschneiden bestimmt, um das Auftreten von Gasmischungen zu verhindern. Ein möglicher Rückfluss von Gas während des Betriebs kann durch Unterbinden des Rückflusses in den Zylinder oder die Leitung

Technische Daten								
Gehäusev	verkstoff	Brass						
Größe	Gewinde		1/8", 1/4", 3/8" / M16, W 12,5-20					
dioise	Schlauchstutzen	1/4", 5/16", 3/8"						
Druckeinheit		MPa	kgf/cm ²	Bar	PSI			
Betriebsdruck		0,7	7		102			
Dichtungsmaterial Betriebstemperaturbereich		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
		Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial			

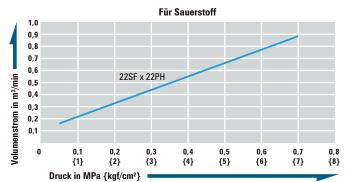
Max. Anzugsdrehmoment Nm {kgf·cm}						
Modell	22PF, 22PFB, 22SF, 25PF, 33PF, 33PFB, 33SF	22SM	33SM			
Drehmoment	12 {122}	9 {92}	11 {112}			

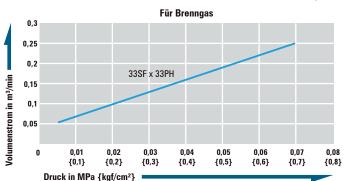
Strömungsrichtung Das Fluid muss von der Buchse zum Stecker strömen

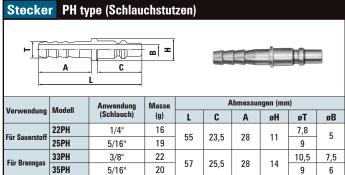
Austauschbarkeit

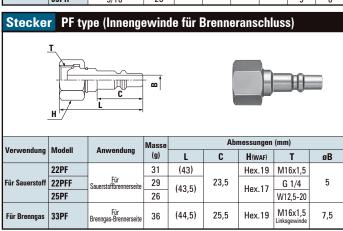
Um eine versehentliche Verbindung zu vermeiden, können keine Cuplas für Sauerstoff mit Cuplas für Brenngas verbunden werden. Sauerstoffstecker und -buchsen sind jedoch unabhängig von der Endkonfiguration austauschbar, und Brenngasstecker und -buchsen sind ebenfalls unabhängig von der Endkonfiguration austauschbar.

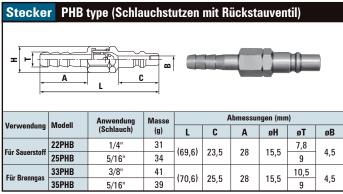
Darüber hinaus sind Mini Cupla-Modelle für Sauerstoff mit Mini Cupla Super-Modellen für Sauerstoff austauschbar, während Brenngasmodelle ebenso austauschbar sind.

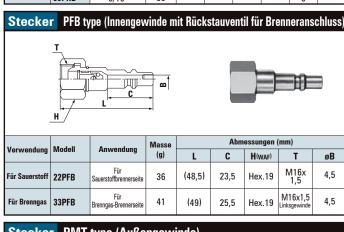

Min. Querschnittsfläche (mm²)									(mm²)	
Für Sauersto	ff									
Stecker Buchse	22PH	25PH	22PF	22PFF	25PF	22PHB	25PHB	22PFB	21PMT	22PMT
22SH	19,6	19,6	19,6	19,6	19,6	15,9	15,9	15,9	19,6	19,6
25SH	19,6	19,6	19,6	19,6	19,6	15,9	15,9	15,9	19,6	19,6
22SF	19,6	19,6	19,6	19,6	19,6	15,9	15,9	15,9	19,6	19,6
22SM	19,6	19,6	19,6	19,6	19,6	15,9	15,9	15,9	19,6	19,6
Für Brenngas										
Stecker	220	ы	2EDU	2	2 DE	2201	JD.	2EDUD	2	2DED

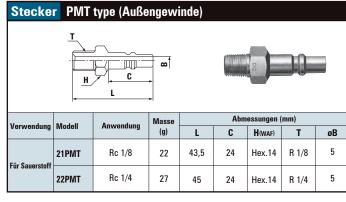

Stecker Buchse	33PH	35PH	33PF	33РНВ	35PHB	33PFB
33SH	44,1	28,2	44,1	15,9	15,9	15,9
35SH	28,2	28,2	28,2	15,9	15,9	15,9
33SF	19,6	19,6	19,6	15,9	15,9	15,9
33SM	44,1	28,2	44,1	15,9	15,9	15,9

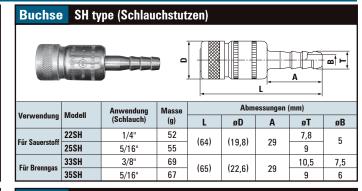

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

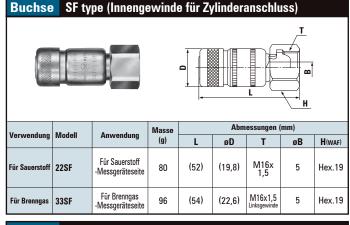

Druck-Volumenstrom-Kennlinien

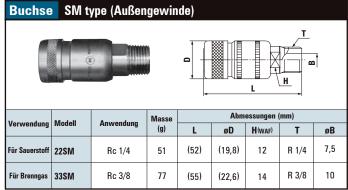

[Testbedingungen] • Fluid: Air • Temperatur: Raumtemperatur

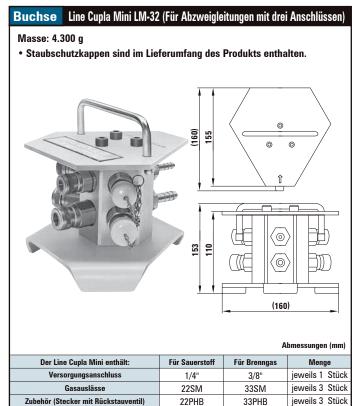












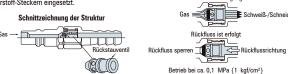
Für Niederdruck

Mini Cupla Super

Push-to-connect-Hochleistungssteckverbindung für Autogen-Rohrleitungen

Ausschließlich für Schweiß- und Schneidgeräte.

- Vom Zylinder bis zum Brenner sind alle Rohrverbindungen, die mit Schweißund Schneidgeräten verbunden sind, Push-to-connect-Verbindungen.
- Beschichtetes Gehäuse für bessere Korrosionsbeständigkeit.
- Wärmebehandelte Stecker für bessere Haltbarkeit.
- Sauerstoff- und Brenngas-Cuplas haben verschiedene Konfigurationsgrößen mit Hülsen in verschiedenen Ausführungen, versilberte Beschichtung für Sauerstoff und kupferfarbene Beschichtung für Brenngas, um ein versehentliches Zusammenschalten zu verhindern.
- Kleinere Durchmesser ermöglichen ein breiteres Anwendungsspektrum.
- Verschiedene Arten von Endkonfigurationen wurden standardisiert, um einer breiten Palette von Schweiß- und Schneidgeräteanwendungen gerecht zu



Aufbau und Prinzip der Rückflussverhinderung

Stecker mit Rückstauventil

Stecker mit Rückstauventil im Mini Cupla Super sind ausschließlich zum Gasschweißen/Brennschneiden bestimmt, um das Auftreten von Gasmischungen zu verhindern. Ein möglicher Rückfluss von Gas während des Betriebs kann durch Unterbinden des Rückflusses in den Zylinder oder die Leitung gestoppt werden.

Dieses Ventil wird sowohl in Brenngas- als auch in Sauerstoff-Steckern eingesetzt

Specifications Gehäusewerkstoff Buchse: Brass (Chrome plated) Stecker: Steel (Chrome plated) 1/4", 3/8", M16 Größe Schlauchstutzen 1/4", 5/16", 3/8" / 5 mm ID Druckeinheit MPa kgf/cm² PSI Betriebsdruck **Dichtungsmaterial** Betriebstemperaturbereich Nitrile rubber NBR (SG) -20 °C bis +80 Standardmaterial

Max. Anzugsdrehmoment Nm {kgf · c					
Modell	S22PF, S22SF, S33PF, S33SF	S22SM S33SI			
Drehmoment	12 {122}	9 {92}	11 {112}		

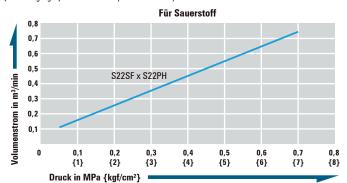
Strömungsrichtung

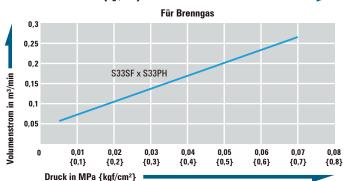
Das Fluid muss von der Buchse zum Stecker strömen

Um eine versehentliche Verbindung zu vermeiden, können keine Cuplas für Sauerstoff mit Cuplas für Brenngas verbunden werden. Sauerstoffstecker und -buchsen sind jedoch unabhängig von der Endkonfiguration austauschbar, und Brenngasstecker und -buchsen sind ebenfalls unabhängig von der Endkonfiguration austauschbar

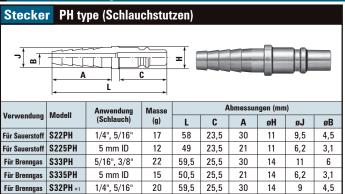
Darüber hinaus sind Mini Cupla Super-Modelle für Sauerstoff mit Mini Cupla-Modellen für Sauerstoff austauschbar, während Brenngasmodelle ebenso austauschbar sind

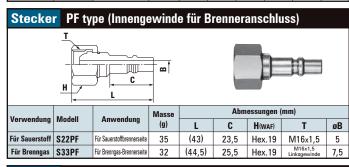
- ür Sauerstof	f			
Stecker	S22PH	S225PH	S22PF	S22PN
S22SH	15,9	7,5	15,9	15,9
S225SH	7,5	7,5	7,5	7,5
S22SF	15,9	7,5	15,9	15,9
S22SM	15,9	7,5	15,9	15,9
S22SN	15,9	7,5	15,9	15,9

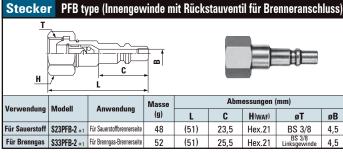

Stecker Buchse	S33PH	S335PH	S33PF	S33PN
S33SH	28,2	7,5	28,2	15,9
S335SH	7,5	7,5	7,5	7,5
S33SF	28,2	7,5	28,2	15,9
S33SM	28,2	7,5	28,2	15,9
S33SN	15.9	7.5	15.9	15.9

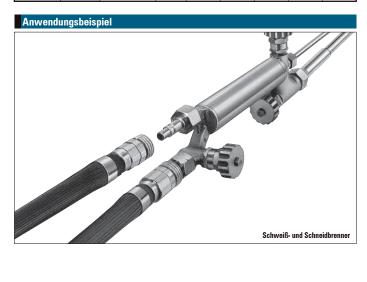

Eignung für Vakuum

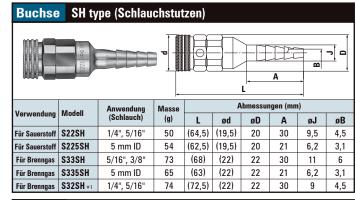
Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

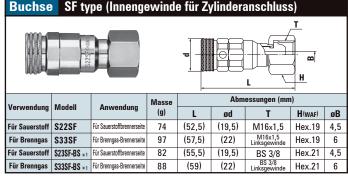

Druck-Volumenstrom-Kennlinien

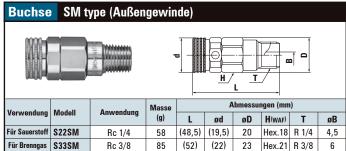

[Testbedingungen] • Fluid: Air • Temperatur: Rau

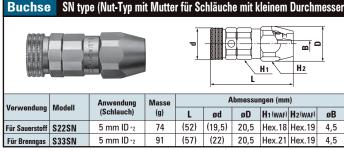


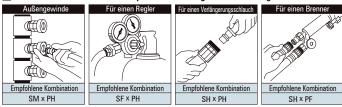

Modelle und Abmessungen








Stecker PN type (Nut-Typ mit Mutter für Schläuche mit kleinem Durchmesser ЩП **m** C H₂ Abmessungen (mm) Masse Anwendung (Schlauch) H1(WAF) H2(WAF) C øΒ Für Sauerstoff S22PN 5 mm ID *2 54 (53,5)23,5 Hex.17 Hex.19 4,5 Für Brenngas S33PN 5 mm ID *2 57 (54,5)25.5 Hex.17 Hex.19 4.5



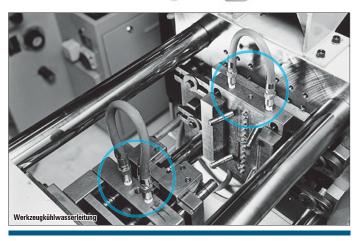
- *1: Sonderanfertigung
- *2: Verfügbare Schlauchgrößen sind ø5 mm x ø11,2 mm, ø5 mm x ø11,5 mm und ø5 mm x ø11,8 mm.

Wählen Sie die Kombination entsprechend Ihrer eigenen Anwendung aus.

Für Niederdruck

Mold Cupla

Universal- und Werkzeugkühlmittel-Anschlusskupplung



Konzipiert für schnellen Werkzeugund Formenwechsel! Rostbeständige Modelle mit vielen Variationen.

- Platzsparende Konstruktion für Werkzeuge mit engen Kühlmittelanschlüssen.
- Langmuffe erleichtert das An- und Abkuppeln mit im Werkzeug eingebettetem Stecker.
- Ermöglicht schnelles An- und Abkuppeln der Werkzeugkühlwasserleitung.
- Verschiedene Größen und Endkonfigurationen für eine Vielzahl von Werkzeuganwendungen.
- Kann mit Super Cuplas verbunden werden, ausgenommen die Typen K3 und K4.
- Push-to-connect-Ausführung. (Integriertes automatisches Absperrventil in der Buchse) Ebenfalls erhältlich sind Cuplas ohne Ventil (bitte bei Bestellung angeben).

• Der Cupla für Geflechtschlauchanschluss benötigt keine Schlauchschelle.

Techn	ische Daten						
Gehäusev	werkstoff	Brass					
Größe	Gewinde	1/8", 1/4", 3/8"					
dione	Schlauchstutzen	Schlauch	Schlauch: 1/4", 3/8" / Geflechtschlauch: ø9 x ø15				
Druckein	heit	MPa	kgf/cm ²	bar	PSI		
Betriebsd	Iruck	1,0	10	10	145		
Diobtuna	amatarial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke		
Dichtungsmaterial Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	20 °C bis +80 °C	Standardmaterial			
•		Fluoro rubber	FKM (X-100)	20 °C bis +180 °C	auf Anfrage erhältlich		

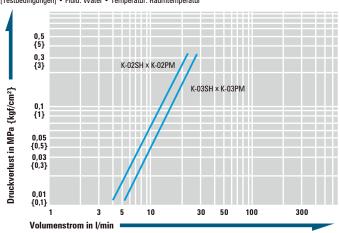
Der maximale Betriebsdruck und der Betriebstemperaturbereich von Cuplas für Geflechtschläuche hängen von den Spezifikationen der zu verwendenden Geflechtschläuche ab.

Max. Anzugsdrehmoment Nm {kgf · cl					
Größe (Gewinde)	1/8"	1/4"	3/8"		
Drehmoment	5 {51}	9 {92}	11 {112}		

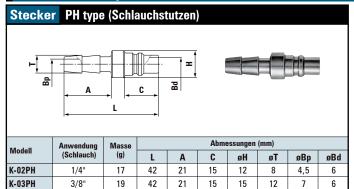
Ziehen Sie die Mutter an, bis sie bündig mit dem Schlauchstutzen abschließt, nachdem Sie einen Geflechtschlauch bis zum Ende hineingedrückt haben.

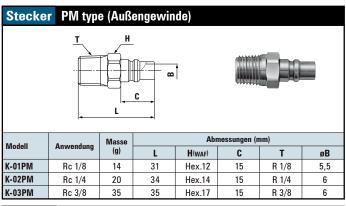
Strömungsrichtung Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind

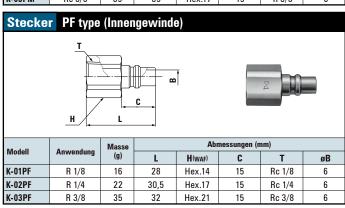
Austauschbarkeit

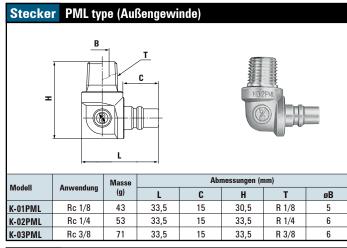

Buchsen und Stecker können unabhängig von den Endkonfigurationen und Größen angeschlossen werden. Die Serien K-01, K-02 und K-03 sind nicht mit den Typen K3 und K4 mit hohem Volumenstrom austauschbar. Anschließbar an Super Cupla.

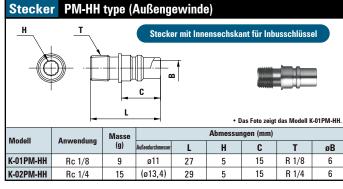
Min. Querschnittsfläche								(mm²)
Stecker	K-02SH	K-03SH	K-02SM	K-03SM	K-02SF	K-02SHL	K-03SHL	K-90SN
K-02PH	15,5	15,5	15,5	15,5	15,5	15,5	15,5	15,5
K-03PH	19	28	28	28	28	15,5	28	28
K-01PM	19	23	23	23	23	15,5	23	23
K-01PM-HH	19	23	23	23	23	15,5	23	23
K-02PM	19	28	28	28	28	15,5	28	28
K-02PM-HH	19	23	23	23	23	15,5	23	23
K-03PM	19	28	28	28	28	15,5	28	28
K-01PF	19	28	28	28	28	15,5	28	28
K-02PF	19	28	28	28	28	15,5	28	28
K-03PF	19	28	28	28	28	15,5	28	28
K-01PML	19	19	19	19	19	15,5	19	19
K-02PML	19	28	28	28	28	15,5	28	28
K-03PML	19	28	28	28	28	15,5	28	28

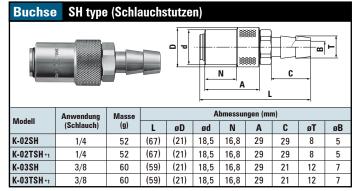

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

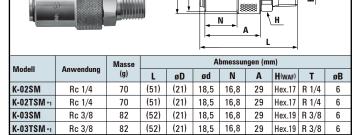

Abmessungen der Sted	(mm)				
	Modell	D*	C*	L	Vermerke
	K-01PM	20 oder mehr	0 bis 3	28	* Durch Buchsenintervention wird ein Verbinden/Trennen verhindert.
	K-01PM-HH	20 oder mehr	0 bis 3	24	wenn C größer als 3 mm ist. * Die Größe D sollte größer als der
	K-02PM	20 oder mehr	0 bis 3	29	Außendurchmesser des zu verwendenden Steckschlüssels
L L	K-02PM-HH	20 oder mehr	0 bis 3	24	sein. (Siehe JISB4636-1, JISB4636-2)
	K-03PM	20 oder mehr	0 bis 3	30	(316116 313154030-1, 313154030-2)

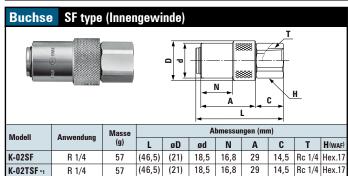

Volumenstrom – Druckverlustcharakteristil

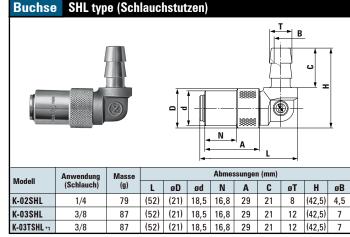



Modelle und Abmessungen

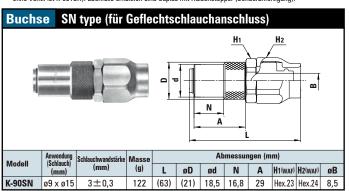








SM type (Außengewinde)


Buchse

*1: Auch ohne Buchsenventil (Sonderanfertigung) lieferbar, gekennzeichnet durch den Produktcode TS (z. B. K-03SH ohne Ventil ist K-03TSH). Ebenfalls erhältlich sind Cuplas mit Hülsenstopper (Sonderanfertigung).

Für Niederdruck

Mold Cupla High Flow Type

Werkzeugkühlmittel-Anschlusskupplung mit hohem Volumenstrom

Der Volumenstrom hat sich verdoppelt, um die Produktivität zu erhöhen.

- Die Serien K3 und K4 mit hohem Volumenstrom wurden zu den Mold Cupla-Serien für Werkzeugkühlung und beheizte Ölanschlusskupplung hinzugefügt.
- Nahezu doppelter Volumenstrom im Vergleich zu unseren Standardmodellen K01, K02 und K03 zur Steigerung der Produktivität.
- Platzsparende Konstruktion für Werkzeuge mit engen Kühlmittelanschlüssen.
- Langmuffe erleichtert das An- und Abkuppeln mit im Werkzeug eingebettetem Stecker.
- Ermöglicht eine schnelle Verbindung/Trennung des Werkzeugkühlmittelschlauchs.

Ergebnisse der verkürzten Kühlzeit in der Praxis

Ein Kunde ersetzte herkömmliche Mold Cuplas der Serie K-0 durch die Serie K3 und verkürzte die Kühlzeit von 30 Sekunden auf 21 Sekunden, was eine Reduzierung um % pro Arbeitsgang und eine Steigerung der Produktivität um 20 % bedeutet. Temperaturkontrollen an 8 Positionen am Werkzeug zeigten, dass die Oberflächentemperaturen im Durchschnitt um 3 gesunken waren, was die hohe Kühlleistung belegt.

Volumenstromvergleich

Die Kühlwasserdurchflussmenge wurde mit einem Durchflussmesser überprüft, der eine 1,7- bis 1,8-fache Erhöhung bei Verwendung der Mold Cupla K3-Serie bestätigte

Erhöht um das

Die K3-Serie wurde eingesetzt.

Techn	ische Daten						
Gehäuse	werkstoff	Brass					
Größe	Gewinde	1/4", 3/8", 1/2"					
dione	Schlauchstutzen	3/8"-, 1/2"-Schlauch					
Druckein	heit	MPa	kgf/cm²	Bar	PSI		
Betriebso	lruck	1,0	10	10	145		
Dichtungsmaterial		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke		
•	smateriai emperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial		
Zourozoumporuma zorozou		Fluoro rubber	FKM (X-100)	20 °C bis +180 °C	auf Anfrage erhältlich		

Max. Anzugsdrehmome	Nm {kgf·cm}		
Größe (Gewinde)	1/4"	3/8"	1/2"
Drehmoment	9 {92}	11 {112}	20 {204}

Strömungsrichtung

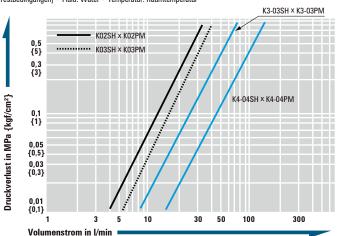
Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind

In der K3-Serie können Buchsen und Stecker unabhängig von den Endkonfigurationen und Größen angeschlossen werden.

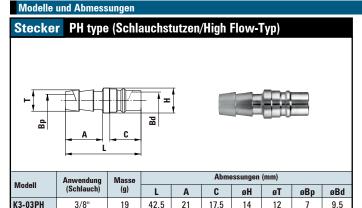
In der K4-Serie können Buchsen und Stecker unabhängig von den Endkonfigurationen und Größen angeschlossen werden.

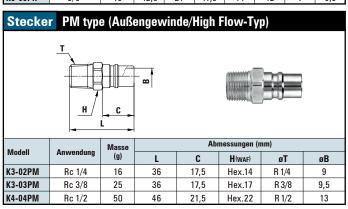
Die Serien K3 und K4 sind nicht untereinander austauschbar.

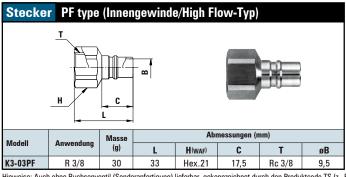
Min. Querschnittsfläche						
Stecker	K3-03SH	K3-04SH	K3-03SM	K3-03SF	K4-04SH	
K3-03PH	38	38	38	38	-	
K3-02PM	38	62,5	62,5	62,5	-	
K3-03PM	38	62,5	62,5	62,5	-	
K3-03PF	38	62,5	62,5	62,5	-	
K4-04PM	-	-	-	-	78,5	

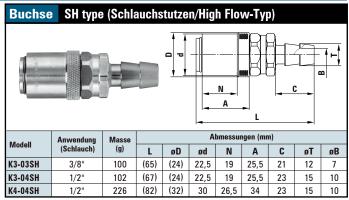

Eignung für Vakuum

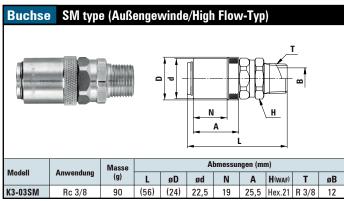
Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

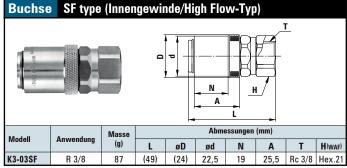

Abmessungen der	(mm)					
		Modell	D*	C*	L	Vermerke
		K3-02PM	24 oder mehr	0 bis 3	31	* Durch Buchsenintervention wird ein Verbinden/Trennen verhindert, wenn C größer als 3 mm ist.
		K3-03PM	24 oder mehr	0 bis 3	31	* Die Größe D sollte größer als der Außendurchmesser des zu verwendenden Steckschlüssels
L T	-0	K4-04PM	32 oder mehr	0 bis 3	39	sein. (Siehe JISB4636-1, JISB4636-2)


Volumenstrom - Druckverlustcharakteristik (Vergleich mit Mold Cupla)

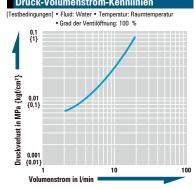

[Testbedingungen] • Fluid: Water • Temperatur: Raumtemperatur




Cuplas der K-0- Serie verwendet.



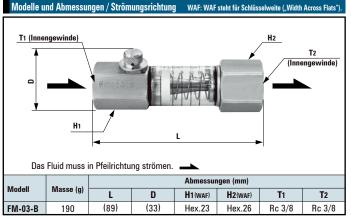
Hinweise: Auch ohne Buchsenventil (Sonderanfertigung) lieferbar, gekennzeichnet durch den Produktcode TS (z. B. K3-03SH ohne Ventil ist K3-03TSH). Ebenfalls erhältlich sind Cuplas mit Hülsenstopper (Sonderanfertigung),


Für Niederdruck Flow Meter Flow meter mit Spezialventil für die Werkzeugkühlleitung

Für einen stabilen und genauen Kühlmitteldurchfluss.

- Die abgestufte Skala ermöglicht eine einfache visuelle Kontrolle der Kühlmitteldurchflussmenge, unabhängig vom Bediener.
- Das eingebaute Durchflusseinstellventil ermöglicht die gewünschte Einstellung der Werkzeugbedingungen für jede Maschine.
- Einfache Wiederaufnahme der zuvor eingestellten Werkzeugbedingungen zur Verkürzung der Durchlaufzeiten.
- Die T2-Seite ist mit einer Drehfunktion ausgestattet. Auch nach der Befestigung des Gehäuses auf

der T1-Seite an der Rohrleitung ist ein zusätzlicher Schraubenanzug auf der T2-Seite möglich.



Technische Daten						
Gehäusewerkstoff	Gehäuse: Brass Abstufungsrohr: Polycarbonate					
Größe (Gewinde)		Beide Enden Rc	3/8-Innengewind	е		
Druckeinheit	MPa	kgf/cm ²	Bar	PSI		
Betriebsdruck	0,5	5	5	72,5		
Max. Volumenstrom	1	8 I/min (5 bis 18	8 I/min einstellba	ar)		
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebsemperaturbereich	Vermerke		
Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +60 °C	Standardmaterial		
· ·	Nitrile rubber	NBR (SG)	-20 °C bis +60 °C			

• Einsatz im Temperaturbereich von $+10\,\,^{\circ}$ C bis $+60\,\,^{\circ}$ C durch Kunststoffschwimmer.

Max. Anzugsdrehmome	ent	Nm {kgf·cm}
Drehmoment	11 {112}	

Für Niederdruck

Lever Lock Cupla

Metal Body/Kunststoffgehäuse

Für Schüttgut- und Niederdruckanwendungen

Änderungen der Konstruktionen und Spezifikationen sind ohne Vorankündigung vorhehalten

Per leichtem Hebelabzug nach unten werden Stecker und Buchse zuverlässig miteinander verbunden, damit Flüssigkeiten oder Gase strömen können.

- Dieser Cupla eignet sich für vielfältige Anwendungen im Flüssigkeits- oder Gastransport.
- Die Stirnflächendichtungsstruktur verhindert Unebenheiten und Vertiefungen im inneren Fluidkanal und sorgt so für einen reibungslosen Fluidtransport.
- Eine spezielle Lippendichtung (außer bei den Größen 3/4 und 1", silicone rubber und FEP-beschichtetem Gummi) reduziert die Belastung des Hebels und erleichtert dadurch die Bedienung.
- Die Abmessungen der Anschlussteile entsprechen den US-Militärspezifikationen MIL-A-A-59326.
- Die Vielfalt der Gehäusewerkstoffe, -größen und -konfigurationen wurde standardisiert, um einem breiten Anwendungsspektrum gerecht zu werden.
- Eine zusätzliche Stopperfunktion erhöht die Sicherheit (nur bei Sonderanfertigungen aus Metall).

Spezifikationen (Spezifikationen (Metallgehäuse)										
Gehäusewerkstoff (Werksto	offsymbol)	Aluminu	m alloy (AL	.), Co	pper a	illoy (BR)	St	ainl	ess steel	(SUS)
Größe (Gewinde und So	chlauch)	3/4" bis 2"	2 1/2"	:	3"	4"	3/4" bi	s 2"	2 1/2" bis 3"	4'	
	MPa	1,8	1,1	0	,9	0,7	1,8	1	1,6	1,	1
Retriehsdruck	kgf/cm ²	18	11		9	7	18		16	11	1
Dourobaliuok	Bar	18	11		9	7	18		16	11	1
	PSI	261	160	1	31 102 26		26	ı	232	16	0
Dichtungsmaterial		Dichtungsmaterial		ı	Kennzeichnung			Beti	riebstemper	aturbe	reich
Betriebstemperaturber	reich	Nitrile rubber			NBR (SG)			-20 °C bis +		+80	°C
		Dichtun	gsmateria	ı	Kennzeichnung		ng	Betriebstemperaturbereich			
		Silicor	ne rubber			SI		-40	°C bis -	+150	°C
Optionales Dichtungsn		Fluor	o rubber		Fl	KM (X-10	0)	-20	°C bis -	+180	°C
Betriebstemperaturbereich		Ethylene-pr	opylene rubl	ber	Е	PDM (EP	Γ)	-40	°C bis -	+150	°C
		FEP-covered	d silicon rubb	er*		_		+!	5 °C bis	+50	°C
		FEP-covere	d fluoro rubbe	er*		-		+!	5 °C bis	+50	°C

^{*}Sonderanfertigung (Arbeitsdruck: 0,2 MPa {2 kgf/cm²})

Spezifikationen	(Kunsts	toffgehäuse)					
Gehäusewerkstoff (Werkst	offsymbol)		Polypropy	/lene (PP)			
Größe (Gewinde und S	chlauch)	3/4", 1", 1 1/2	2"		2", 3"		
	MPa	0,5		0,2			
Betriebsdruck*	kgf/cm ²	5		2			
	Bar	5		2			
	PSI	72,5			29		
Dichtungsmaterial		Dichtungsmaterial	Kennzei	ichnung	Betriebstemperaturbereich		
Betriebstemperaturbe	reich	Nitrile rubber	NBR	(SG)	+5 °C bis +50 °C		
		Dichtungsmaterial	Kennzei	ichnung	Betriebstemperaturbereich		
Optionales Dichtungsr		Silicone rubber	S	SI	+5 °C bis +50 °C		
Betriebstemperaturbereich		Fluoro rubber	FKM (X-100)	+5 °C bis +50 °C		
		Ethylene-propylene rubber	EPDM	(EPT)	+5 °C bis +50 °C		

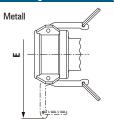
^{*}Druck bei 20 °C. Der Druck nimmt mit steigender Temperatur ab

Max. Anz	Max. Anzugsdrehmoment Nm {kgf·cm}											
Größe (Gewin	ide)	3/4"	1"	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"			
Drehmoment	Aluminiumlegierung Kupferlegierung		70 {714}	120 {1224}	140 {1428}	260 {2652}	350 {3570}	410 {4182}	470 {4794}			
Dieilillollielit	Edelstahl	90 {918}	120 {1224}	220 {2244}	260 {2652}	350 {3570}	480 {4896}	520 {5304}	590 {6018}			

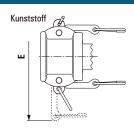
Strömungsrichtung

Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Austauschbarkeit

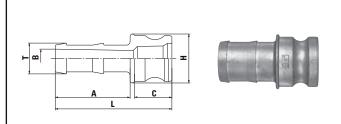

Buchsen und Stecker gleicher Größe sind unabhängig von ihrer Endkonfiguration austauschbar. Die Abmessungen der Anschlussteile entsprechen der Norm MIL-A-A-59326.

Eignung für Vakuum (Me	Eignung für Vakuum (Metallgehäuse)				
nur Buchse	Bei Anschluss				
_	-	betriebsbereit			

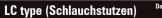

Eignung für Vakuum (Kunststoffgehäuse)

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

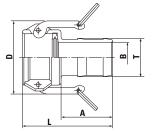
Abmessungen bei vollständig geöffnetem Hebel



	A	bmessungen E (n	ım)
Größe		Gehäusewerkstof	f
	AL	BR	SUS
3/4"	(122,5)	(122,5)	(111)
1"	(132)	(132)	(125)
1 1/4"	(183)	(183)	(179)
1 1/2"	(191)	(191)	(187)
2"	(201)	(201)	(196)
2 1/2"	(213)	(209)	(209)
3"	(249)	(249)	(251)
4"	(280)	(278)	(277)

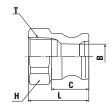

Größe	Abmessungen E (mm)
3/4"	(115)
1"	(126)
1 1/2"	(187)
2"	(195)
3"	(249)

Stecker LE type (Schlauchstutzen)



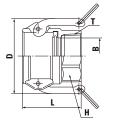
irial		Anwendung	Masse			Abmessur	ngen (mm)		
Material	Modell	(Schlauch)	(g)	L	Α	С	øH	øT	øB
	LE-6TPH	3/4"	65	81	52	26	34	21,4	11
_	LE-8TPH	1"	100	95	58	34	40	27,4	17,5
Aluminum alloy	LE-10TPH	1 1/4"	140	102	58	40	48	34,1	23,5
Ē	LE-12TPH	1 1/2"	190	107	61	42	58	40,5	29
Ĭ. Ē	LE-16TPH	2"	290	122	70	48	69	53,2	40
1	LE-20TPH	2 1/2"	390	134,5	80	50	81	66,7	50
	LE-24TPH	3"	545	167	101	61,5	97	79	68
	LE-32TPH	4"	850	176	109	57	129	105	93
	LE-6TPH	3/4"	215	90,5	52,5	26	39	21,5	12,5
	LE-8TPH	1"	305	107	60	34,5	41	27,5	20
9	LE-10TPH	1 1/4"	440	102	58	40	48	34,1	25,5
Copper alloy	LE-12TPH	1 1/2"	560	107	61	42	58	40,5	31,5
edd	LE-16TPH	2"	865	131	73	54	70,5	53,5	44,5
ပိ	LE-20TPH	2 1/2"	1180	149	84	48	91	67	57
	LE-24TPH	3"	1800	162	99,5	56,5	102	78	68
	LE-32TPH	4"	3500	176	109	57	129	105	93
	LE-6TPH	3/4"	170	90	52	35,5	35	21	15
	LE-8TPH	1"	265	107	60	44	42	27	20
tee	LE-10TPH	1 1/4"	430	111	61	40	48	34	25,5
SS	LE-12TPH	1 1/2"	530	114	61	40	60	40	33
Stainless steel	LE-16TPH	2"	790	131	73	45	70	53	44
Stai	LE-20TPH	2 1/2"	1195	137	80,5	50,5	83	67	56
	LE-24TPH	3"	1755	162	99,5	56,5	102	78	68
	LE-32TPH	4"	2595	174	109	59	130	105	94

Buchse

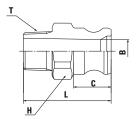


=				Abmessungen (mm)							
Material	Modell	Anwendung (Schlauch)	Masse				<u>'</u>				
Š			(g)	L	A	D (22.5)	øT	øB			
	LC-6TSH	3/4"	140	85	52	(60,5)	21,4	(11)			
_	LC-8TSH	1"	190	99	58	(61)	27,4	(17,4)			
읉	LC-10TSH	1 1/4"	320	104	58	(82)	34,1	(23,4)			
Ē	LC-12TSH	1 1/2"	350	108,5	61	(90)	40,5	(29,2)			
·≣	LC-16TSH	2"	430	122,5	70	(100)	53,2	41,4			
Aluminum alloy	LC-20TSH	2 1/2"	560	136,5	80	(112)	66,7	54,1			
	LC-24TSH	3"	915	175	100	(139)	79	68			
	LC-32TSH	4"	1190	180	104	(165)	104	93			
	LC-6TSH	3/4"	320	85	52	(60,5)	21,4	13			
	LC-8TSH	1"	420	99	58	(61)	27,4	19,5			
≥	LC-10TSH	1 1/4"	700	104	58	(82)	34,1	23,4			
a	LC-12TSH	1 1/2"	720	110	62	(91)	41	33			
Copper alloy	LC-16TSH	2"	870	121	70	(100)	53	44			
ပိ	LC-20TSH	2 1/2"	1530	137	83	(113)	67	57			
	LC-24TSH	3"	1795	160	105	(139)	79	68			
	LC-32TSH	4"	3100	163	107	(168)	104	92			
	LC-6TSH	3/4"	230	86	52	(55)	21	15			
	LC-8TSH	1"	340	99	60	(63)	27	20			
tee	LC-10TSH	1 1/4"	615	107	61	(85)	34	25,5			
SS	LC-12TSH	1 1/2"	645	108	61	(91)	40	33			
Stainless steel	LC-16TSH	2"	1000	129	73	(101)	53	44			
Stai	LC-20TSH	2 1/2"	1270	134	81	(113)	67	57			
"	LC-24TSH	3"	2065	158	100	(139)	79	67			
	LC-32TSH	4"	3020	165	107	(167)	105	94			

Stecker LA type (Innengewinde)

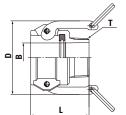


arial		Anwendung	Masse	Abmessunge	en (mm) Okt.	steht für Achte	eht für Achteck. Dod. steht für Zwölfeck.			
Material	Modell	(Gewinde)	(g)	L	С	H(WAF)	øB	Т		
	LA-6TPF	3/4"	45	42	26	Hex.36	17	Rc 3/4		
۱ ـ	LA-8TPF	1"	65	52	34	Hex.41	22,5	Rc 1		
Aluminum alloy	LA-10TPF	1 1/4"	110	59	40	Hex.50	27,5	Rc 1 1/4		
ΙË	LA-12TPF	1 1/2"	130	58	42	Hex.60	34,5	Rc 1 1/2		
.≣	LA-16TPF	2"	170	63,5	48	0kt.70	44,5	Rc 2		
🛓	LA-20TPF	2 1/2"	320	85	50	0kt.85	55,5	Rc 2 1/2		
_	LA-24TPF	3"	370	79	52,5	Dod.99	73,5	Rc 3		
	LA-32TPF	4"	640	82	54	Dod.130	100	Rc 4		
	LA-6TPF	3/4"	145	42	27	0kt.34	20	Rc 3/4		
	LA-8TPF	1"	190	46	32	0kt.41	24	Rc 1		
<u>6</u>	LA-10TPF	1 1/4"	390	59	40	Hex.50	28	Rc 1 1/4		
Copper alloy	LA-12TPF	1 1/2"	420	58	42	Okt.60	36	Rc 1 1/2		
e d	LA-16TPF	2"	560	63,5	48	0kt.70	45	Rc 2		
ပိ	LA-20TPF	2 1/2"	950	79	50	Dod.84	56	Rc 2 1/2		
	LA-24TPF	3"	1210	71	50	Dod.101	70	Rc 3		
	LA-32TPF	4"	1620	79	53	Dod.127	101	Rc 4		
	LA-6TPF	3/4"	120	39	27	0kt.33	19	Rc 3/4		
l _	LA-8TPF	1"	170	47	33	0kt.41	24	Rc 1		
tee	LA-10TPF	1 1/4"	270	53,5	41	0kt.50	28	Rc 1 1/4		
SSS	LA-12TPF	1 1/2"	375	55	40	0kt.58	35,5	Rc 1 1/2		
n e	LA-16TPF	2"	505	62	47	Okt.69	45	Rc 2		
Stainless steel	LA-20TPF	2 1/2"	825	77	49	Dod.83	56	Rc 2 1/2		
"	LA-24TPF	3"	875	72	51	Dod.96	73	Rc 3		
	LA-32TPF	4"	1470	79	53	Dod.124	100	Rc 4		


Buchse LD type (Innengewinde)

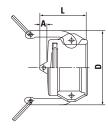
arial		Anwendung	Masse	Abmessunge	n (mm) Okt. s	teht für Achtecl	c. Dod. steht	Dod. steht für Zwölfeck.		
Material	Modell	(Gewinde)	(g)	L	D	H(WAF)	øB	Т		
	LD-6TSF	3/4"	130	53	(62,4)	Hex.36	21	Rc 3/4		
_	LD-8TSF	1"	190	64,5	(61)	Hex.41	26	Rc 1		
Aluminum alloy	LD-10TSF	1 1/4"	330	72,5	(82)	Hex.50	34	Rc 1 1/4		
Ē	LD-12TSF	1 1/2"	360	70,5	(90)	Hex.60	39	Rc 1 1/2		
Ē	LD-16TSF	2"	420	79,5	(100)	0kt.70	49	Rc 2		
Mur	LD-20TSF	2 1/2"	550	88,5	(112)	0kt.85	59	Rc 2 1/2		
1	LD-24TSF	3"	800	89	(140)	Dod.99	75	Rc 3		
	LD-32TSF	4"	1140	93	(165)	Dod.131	94	Rc 4		
	LD-6TSF	3/4"	310	53	(60,5)	Hex.36	21	Rc 3/4		
	LD-8TSF	1"	430	64,5	(61)	Hex.41	26	Rc 1		
ю	LD-10TSF	1 1/4"	730	72,5	(82)	Hex.50	34	Rc 1 1/4		
Copper alloy	LD-12TSF	1 1/2"	770	70,5	(90)	Okt.60	39	Rc 1 1/2		
bbe	LD-16TSF	2"	990	79,5	(100)	0kt.70	49	Rc 2		
ပိ	LD-20TSF	2 1/2"	1290	81,5	(113)	Dod.84	61	Rc 2 1/2		
	LD-24TSF	3"	1560	87	(139)	Okt.96	77	Rc 3		
	LD-32TSF	4"	3590	91	(165)	Dod.126	96	Rc 4		
	LD-6TSF	3/4"	225	52	(55)	0kt.32	19	Rc 3/4		
	LD-8TSF	1"	350	60	(63)	0kt.41	24	Rc 1		
teel	LD-10TSF	1 1/4"	600	68	(85)	0kt.50	30	Rc 1 1/4		
SS	LD-12TSF	1 1/2"	715	72	(87)	Okt.58	37,5	Rc 1 1/2		
nles	LD-16TSF	2"	940	78,5	(100)	Okt.69	50	Rc 2		
Stainless steel	LD-20TSF	2 1/2"	1050	82	(113)	Dod.83	61	Rc 2 1/2		
	LD-24TSF	3"	1605	84	(140)	Dod.97	77	Rc 3		
	LD-32TSF	4"	2575	94	(167)	Dod.125	97	Rc 4		

Stecker LF type (Außengewinde)



ərial	80. 4.11	Anwendung	Masse	Abmessunge	n (mm) Okt. s	teht für Achte	ck. Dod. steht	für Zwölfeck.
Material	Modell	(Gewinde)	(g)	L	С	H(WAF)	øB	T
	LF-6TPM	3/4"	70	61	26	Hex.36	16	R 3/4
١ ـ	LF-8TPM	1"	90	73	34	Hex.41	22	R 1
	LF-10TPM	1 1/4"	140	81	40	Hex.50	28	R 1 1/4
Aluminum alloy	LF-12TPM	1 1/2"	150	80,5	42	0kt.55	34,5	R 1 1/2
ŀ≣	LF-16TPM	2"	220	89,5	48	Okt.65	44,5	R 2
1	LF-20TPM	2 1/2"	370	101	50	0kt.80	56	R 2 1/2
	LF-24TPM	3"	470	106	52	Dod.99	73	R 3
	LF-32TPM	4"	875	116	54	Dod.130	100	R 4
	LF-6TPM	3/4"	185	59	27	0kt.34	20	R 3/4
	LF-8TPM	1"	280	69	32	0kt.41	24	R 1
<u>></u>	LF-10TPM	1 1/4"	460	81	40	Hex.50	28	R 1 1/4
r a	LF-12TPM	1 1/2"	500	80,5	42	0kt.55	36	R 1 1/2
Copper alloy	LF-16TPM	2"	750	89,5	48	Okt.65	45	R 2
ပိ	LF-20TPM	2 1/2"	1290	98	50	Dod.83	56	R 2 1/2
	LF-24TPM	3"	1480	103	50,8	Dod.96	73	R 3
	LF-32TPM	4"	3155	113	53	Dod.126	100	R 4
	LF-6TPM	3/4"	175	59	27	0kt.33	19	R 3/4
	LF-8TPM	1"	255	69	33	0kt.41	24	R 1
tee	LF-10TPM	1 1/4"	415	80	42	0kt.50	29,5	R 1 1/4
SS	LF-12TPM	1 1/2"	575	80	40	Okt.58	36,5	R 1 1/2
Stainless steel	LF-16TPM	2"	680	90	46,5	Okt.69	46	R 2
Stai	LF-20TPM	2 1/2"	1020	99	49	Dod.83	56	R 2 1/2
"	LF-24TPM	3"	1415	103	51	Dod.96	73	R 3
	LF-32TPM	4"	2275	112	53	Dod.124	100	R 4

Buchse LB type (Außengewinde)



irial		Anwendung	Masse		Abmessur	igen (mm)	
Material	Modell	(Gewinde)	(g)	L	D	øB	T
	LB-6TSM	3/4"	110	53	(60,5)	17,2	R 3/4
l _	LB-8TSM	1"	170	65	(61)	23,6	R 1
€	LB-10TSM	1 1/4"	310	72	(82)	29,5	R 1 1/4
Ē	LB-12TSM	1 1/2"	340	71,5	(90)	36	R 1 1/2
Aluminum alloy	LB-16TSM	2"	400	79,5	(100)	45,9	R 2
	LB-20TSM	2 1/2"	530	88,5	(112)	57,7	R 2 1/2
_	LB-24TSM	3"	715	90	(139)	76	R 3
	LB-32TSM	4"	920	92	(165)	99	R 4
(Bu	LB-6TSM	3/4"	260	52	(53)	19,5	R 3/4
artigu	LB-8TSM	1"	355	63	(62)	26	R 1
aranf	LB-10TSM	1 1/4"	620	71	(84)	28	R 1 1/4
Copper alloy (Sonderanfertigung)	LB-12TSM	1 1/2"	700	71	(91)	36	R 1 1/2
6	LB-16TSM	2"	950	81	(100)	51	R 2
r a	LB-20TSM	2 1/2"	1250	86	(113)	63	R 2 1/2
bbe	LB-24TSM	3"	1780	92	(139)	78	R 3
ပိ	LB-32TSM	4"	2540	98	(168)	101	R 4
tlich)	LB-6TSM	3/4"	210	52,5	(55)	20	R 3/4
erhäl	LB-8TSM	1"	300	63	(63)	25,5	R 1
frage	LB-10TSM	1 1/4"	520	70,5	(85)	34	R 1 1/4
auf An	LB-12TSM	1 1/2"	580	71,5	(87)	38	R 1 1/2
9	LB-16TSM	2"	780	78,5	(101)	50,5	R 2
Stainless steel (auf Anfrage erhäldich)	LB-20TSM	2 1/2"	980	84	(113)	66	R 2 1/2
inles	LB-24TSM	3"	1490	92	(139)	78,5	R 3
Stai	LB-32TSM	4"	2080	92	(167)	103,5	R 4

Stecker L-PD type (Steckerkappe)

arial		0 "0	Masse		Abmessungen (mm)	
Material	Modell	Größe	(g)	L	Α	D
	L-6PD	3/4"	100	46	12	(54)
Aluminum alloy	L-8PD	1"	145	54	11,5	(62)
	L-10PD	1 1/4"	230	60	13	(83)
	L-12PD	1 1/2"	295	68	17	(91)
	L-16PD	2"	360	68	11	(100)
	L-20PD	2 1/2"	435	72	15	(113)
	L-24PD	3"	690	72	10	(139)
	L-32PD	4"	870	76	15	(167)
	L-6PD	3/4"	220	45	11	(53)
	L-8PD	1"	315	53	12	(62)
<u>o</u>	L-10PD	1 1/4"	610	61	13	(84)
r a	L-12PD	1 1/2"	645	69	17,5	(91)
Copper alloy	L-16PD	2"	830	68	11	(100)
ပိ	L-20PD	2 1/2"	980	71	14	(113)
	L-24PD	3"	1380	81	20	(139)
	L-32PD	4"	2700	90	26	(168)
	L-6PD	3/4"	180	45	12	(55)
	L-8PD	1"	265	52	11	(63)
tee	L-10PD	1 1/4"	475	60	11	(85)
Stainless steel	L-12PD	1 1/2"	545	63	15	(87)
le le	L-16PD	2"	720	65	11	(101)
Stai	L-20PD	2 1/2"	945	71	15	(113)
	L-24PD	3"	1420	72	12	(139)
	L-32PD	4"	2055	77	14	(167)

Buchse L-SD type (Buchsenkappe)

ial			Masse		Abmessungen (mm)	
Material	Modell	Größe	(g)	L	Α	øD
	L-6SD	3/4"	35	32	8	32
_	L-8SD	1"	45	44	10	36,7
<u>€</u>	L-10SD	1 1/4"	70	57	14	45,5
Ē	L-12SD	1 1/2"	90	54	15	53,4
ij	L-16SD	2"	140	62	13	63
Aluminum alloy	L-20SD	2 1/2"	210	69	20	75,8
_	L-24SD	3"	290	71	15	91,5
	L-32SD	4"	960	74	16	119,4
	L-6SD	3/4"	160	34	8	32,1
	L-8SD	1"	150	44	10	36,7
<u>></u>	L-10SD	1 1/4"	210	55	12	45,5
Copper alloy	L-12SD	1 1/2"	290	54	15	53,4
bbe	L-16SD	2"	420	61	13	63
ပိ	L-20SD	2 1/2"	630	69	19	75,7
	L-24SD	3"	860	71	15	91,5
	L-32SD	4"	1780	74,5	16	119,4
	L-6SD	3/4"	95	39	12	32
	L-8SD	1"	145	45	12	37
tee	L-10SD	1 1/4"	250	51	10	45
SS	L-12SD	1 1/2"	300	54	14	53
Stainless steel	L-16SD	2"	490	59,5	12,5	63
Stai	L-20SD	2 1/2"	710	64	14	76
٠,	L-24SD	3"	930	68	14	92
	L-32SD	4"	1275	68	14	120

Stecker LE type (Schlauchstutzen)

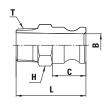
Material	NA	Anwendung	Masse	Abmessungen (mm)							
Mat	Modell	(Schlauch)	(g)	L	Α	C	øH	øT	øB		
	LE-6TPH	3/4"	16	74,5	51,5	(23)	(32)	20,7	14,2		
<u>.0</u>	LE-8TPH	1"	29	87,5	57,5	(30)	(36,5)	26,3	19		
Plastic	LE-12TPH	1 1/2"	73	103	61,5	(41,5)	(53,5)	40	30		
Б	LE-16TPH	2"	122	119	71	(48)	(63)	52,5	41		
	LE-24TPH	3"	221	151,5	106,5	(45)	(91,5)	77	64,5		

Buchse LC type (Schlauchstutzen)

Material		Anwendung	Masse	Abmessungen (mm)							
Mat	Modell	(Schlauch)	(g)	L	Α	Н	øT	øB			
	LC-6TSH	3/4"	64	83	52	(63,5)	20,2	14			
و.	LC-8TSH	1"	104	97,5	56,5	(73)	26,2	20			
Plastic	LC-12TSH	1 1/2"	242	109,5	60,5	(95)	39	29,5			
П	LC-16TSH	2"	269	125	70,5	(105,5)	52,5	41			
	LC-24TSH	3"	527	161	102	(136,5)	77	64,5			

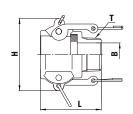
Stecker LA type (Innengewinde)

arial		Anwendung	Masse	Abmessungen (mm)							
Material	Modell	(Gewinde)	(g)	L	С	H(WAF)	øB	T			
	LA-6TPF	3/4"	19	42	(26)	Hex.34	21,3	Rc 3/4			
<u>.</u> 2	LA-8TPF	1"	27	59	(34)	Hex.43	22	Rc 1			
Plastic	LA-12TPF	1 1/2"	65	67	(42)	Gerippt 65	36,6	Rc 1 1/2			
_	LA-16TPF	2"	102	73	(47,5)	Gerippt 78	42	Rc 2			
	LA-24TPF	3"	211	90	(52.5)	Gerippt 108	71	Rc 3			

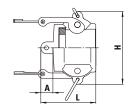

Buchse LD type (Innengewinde)

Material	NA - 1 - 11	Anwendung	Masse	Abmessungen (mm)						
Mat	Modell	(Gewinde)	(g)	L	H(WAF)	øB	T			
	LD-6TSF	3/4"	65	49	Hex.32	21,5	Rc 3/4			
్లు	LD-8TSF	1"	98	61	Hex.41	27	Rc 1			
Plastic	LD-12TSF	1 1/2"	260	77,5	Gerippt 68	39	Rc 1 1/2			
_	LD-16TSF	2"	285	83	Gerippt 80	51	Rc 2			
	LD-24TSF	3"	444	90,5	Gerippt 109	77,5	Rc 3			

Stecker LF type (Außengewinde)



ərial	Modell	Anwendung	Masse	Abmessungen (mm)							
Material	IVIOGEII	(Gewinde)	(g)	L	C	H(WAF)	øB	T			
	LF-6TPM	3/4"	23	60	(26)	Hex.32	19	R 3/4			
ic	LF-8TPM	1"	19	71	(34)	Hex.37	23	R 1			
Plastic	LF-12TPM	1 1/2"	72	77	(42)	Gerippt 63	32	R 1 1/2			
Ь	LF-16TPM	2"	105	84,5	(48)	Gerippt 74	44,5	R 2			
	LF-24TPM	3"	210	102,5	(51,5)	Gerippt 100	72	R 3			


Buchse LB type (Außengewinde)

Material	Modell	Anwendung		Abmessungen (mm)						
Mat	Modell	(Gewinde)		L	Н	øB	Т			
	LB-6TSM	3/4"	58	49,5	(63,5)	19	R 3/4			
ic	LB-8TSM	1"	88	61	(73)	23,5	R 1			
Plastic	LB-12TSM	1 1/2"	227	77,5	(95)	37	R 1 1/2			
_	LB-16TSM	2"	251	82,5	(105,5)	48	R 2			
	LB-24TSM	3"	397	88	(136,5)	75	R 3			

Stecker L-PD type (Steckerkappe)

Material	84.4.0	0.70.	Masse	Abmessungen (mm)							
Mat	Modell	Größe	(g)	L	Α	Н					
	L-6PD	3/4"	60	45	12	(63,5)					
2.	L-8PD	1"	94	55,5	12	(73)					
Plastic	L-12PD	1 1/2"	214	65	15	(95)					
_	L-16PD	2"	219	70,5	16	(106)					
	I-24PD	3"	408	77	17.5	(136)					

Buchse L-SD type (Buchsenkappe)

Material	84.4.0	0.70.	Masse		Abmessungen (mm)	
Mat	Modell	Größe	(g)	L	Α	øD
	L-6SD	3/4"	10	35,5	12	(32,1)
2.	L-8SD	1"	18	42,5	11	(36,5)
lastic	L-12SD	1 1/2"	46	53,5	14	(53,2)
□	L-16SD	2"	68	63	16	(63)
	L-24SD	3"	102	71	18	(91)

Für Mitteldruck

TSP Cupla

Für allgemeine Anwendungen mittlerer Drücke

Die verwendbaren Fluids für die Ausführung mit Geflechtschlauchanschluss hängen von den Spezifikationen der eingesetzten Geflechtschläuche ab.

Ventillose Konstruktion für hochviskose Fluids! Verschiedene Gehäusematerialien, Größen und **Endkonfigurationen.**

Neu hinzugekommen sind Geflechtschlauch-Anschlussarten.

- Die ventillose Konstruktion spart drastisch in puncto Druckverlust und erreicht einen hohen Volumenstrom.
- Geeignet f
 ür hochviskose Fluids (z. B. Fett).
- Erhältlich in verschiedenen Standardgehäusematerialien, Größen und Endkonfigurationen, um den unterschiedlichen Anwendungen und Betriebssituationen gerecht zu werden.
- Keine Schlauchschelle erforderlich! Einfacher und sicherer Anschluss an den Geflechtschlauch.

Hinweis: Informationen über die Eignung von Dichtungsmaterialien für Fluids finden Sie auf den Seiten mit der Tabelle zur Auswahl der Dichtungsmaterialien am Ende dieses Katalogs.

Technische Daten										
Gehäusewerkstoff		Brass				Stainless s	Stainless steel (SUS304), Steel (Nickel plated)			
Größe (Gewinde und Sc	1/8", 1/4" 3/8", 1/2"	3/4" 1"	1 1/4" 1 1/2"	2"	1/8", 1/4" 3/8", 1/2"	3/4" 1"	1 1/4" 1 1/2"	2"		
	MPa	5,0	3,0	2,0	1,5	7,5	4,5	3,0	2,0	
Betriebsdruck	kgf/cm ²	51	31	20	15	76	46	31	20	
Detriebsuruck	Bar	50	30	20	15	75	45	30	20	
	PSI	725	435	290	218	1090	653	435	290	
		Dichtung	smaterial	Kennzei	chnung	Betriebstemperaturbereich		Verm	erke	
Dichtungsmaterial Betriebstemperaturbereich		Nitrile	rubber	NBR	(SG)	20 °C bis	3° 08+			
		Fluoro	rubber	FKM (K-100)	20 °C bis	+180 °C	Standardmaterial		
		Ethylene- rub		EPDM	(EPT)	40 °C bis	+150 °C			

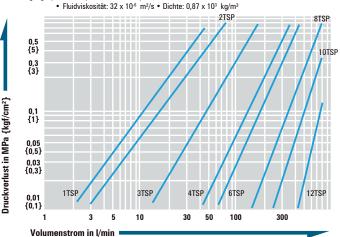
- SUS316 ist als Option erhältlich.
- Maximaler Betriebsdruck und Betriebstemperaturbereich des TSP Cupla für Geflechtschläuche hängen von den Spezifikationen der zu verwendenden Geflechtschläuche ab.
- Das Dichtungsmaterial für Geflechtschläuche ist nur Nitrilkautschuk.
- Das Dichtungsmaterial für Stahlgehäuse ist nur Nitrilkautschuk.

Max. Anzugsdrehmoment Nm {kgf·cm}									·cm}	
Größe (Gewinde)		1/8"	1/4"	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
Drehmoment	Steel	9 {92}	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}	260 {2652}	280 {2856}	500 {5100}
	Brass	5 {51}	9 {92}	12 {122}	30 {306}	50 {510}	65 {663}	150 {1530}	160 {1632}	260 {2652}
	Stainless steel	9 {92}	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}	260 {2652}	280 {2856}	500 {5100}

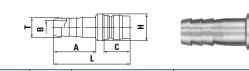
• Ziehen Sie die Mutter für Geflechtschläuche fest, bis sie bündig mit dem Schlauchstutzen abschließt

Strömungsrichtung

Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.


Austauschbarkeit

Wenn die erste Ziffer der Modellnummer an der Buchse mit der des Steckers übereinstimmt können sie unabhängig von den Endkonfigurationen angeschlossen werden.


Min. Querschnittsfläche (mm²)												
Modell Endkonfigurationen	1TSP	2TS	P	3TSP	4TSP	6Т	SP	8TSP	10TSP	121	SP	16TSP
H type (Schlauchstutzen)	7,0 (ø3)	19,0 (ø5	. 1	38,4 (ø7)	78,5 (ø10)	17 (ø1	76 15)	283 (ø19)	530 (ø26)	80 (ø3		1256 (ø40)
M type / F type (Außengewinde/ Innengewinde)	15,9 (ø4,5)	33, (ø6,		78,5 (ø10)	132 (ø13)	22 (ø1	1	452 (ø24)	804 (ø32)	11: (ø3	34 88)	1885 (ø49)
Modell Endkonfigurationen	2TSN- 2TPN-			SN-90 PN-90	4TSN-1 4TPN-1			SN-150 PN-150	6TSN-1			SN-250 PN-250
N type (für Geflechtschlauchanschluss)	23,7 (ø5,5			56,7 ø8,5)	95,0 (ø11)		(132 (ø13)	226 (ø17	- 1		415 ø23)

Eignung für Vakuum	1,3 x 10 ⁻¹ Pa {1 x 10 ⁸ mmHg}						
nur Buchse	nur Stecker	Bei Anschluss					
_	_	betriebsbereit					

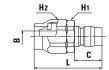
[Testbedingungen] • Fluid: Hydraulic oil • Temperatur: 30 $^{\circ}$ C ± 10 $^{\circ}$ C

Stecker TPH type (Schlauchstutzen)

84 - 4 - 11	Anwendung		Masse (g))		Α	bmessui	ngen (mı	n)	
Modell	(Schlauch)	Steel	Brass	Stainless steel	L	øΗ	Α	С	øΤ	øB
1TPH	1/8"	12 *1	13	12	41	12	20	15,5	6,5	3
2TPH	1/4"	21	23	21	53	14	29	18	8	5
3TPH	3/8"	38	41	38	60	18	32	21	11	7
4TPH	1/2"	71	77	71	70	22	39	24	15	10
6TPH	3/4"	134	146	135	84	28	48	28	21	15
8TPH	1"	327	356	329	105	40	57	36	27	19
10TPH	1 1/4"	495	530	500	121	48	70	39	34,5	26
12TPH	1 1/2"	665	715	660	132	55	75	45	41	32
16TPH	2"	1.330	1.430	1.345	142	70	80	51	54	40

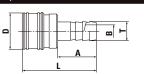
Stecker TPM type (Außengewinde)

Modell	A		Masse (g))	Abmessungen (mm)						
iviodeli	Anwendung	Steel	Brass	Stainless steel	L	H(WAF)	С	T	øB		
1TPM	Rc 1/8	16 *1	17	17	32	Hex.12	15,5	R 1/8	4,5		
2TPM	Rc 1/4	30	33	30	38	Hex.17	18	R 1/4	6,5		
3ТРМ	Rc 3/8	38	42	38	43	Hex.17	21	R 3/8	10		
4TPM	Rc 1/2	81	88	81	52	Hex.22	24	R 1/2	13		
6TPM	Rc 3/4	164	179	165	59	Hex.32	28	R 3/4	17		
8TPM	Rc 1	273	297	274	73	Hex.41	36	R 1	25		
10TPM	Rc 1 1/4	520	560	530	83	Hex.50	39	R 1 1/4	32		
12TPM	Rc 1 1/2	655	705	665	93	Hex.54 *2	45	R 1 1/2	38		
16TPM	Rc 2	1.240	1.345	1.250	102	75 x ø80	51	R 2	50		


Stecker TPF type (Innengewinde)

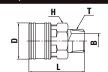
Modell	Anwenduna		Masse (g))	Abmessungen (mm)							
ivioueli	Anwendung	Steel	Brass	Stainless steel	L	H(WAF)	С	T Rc 1/8 Rc 1/4 Rc 3/8 Rc 1/2 Rc 3/4 Rc 1 Rc 1 Rc 1 1/4 Rc 1 1/2 Rc 1 1/2	øB			
1TPF	R 1/8	14 *1	15	14	26	Hex.14	15,5	Rc 1/8	4,5			
2TPF	R 1/4	28	31	29	34	Hex.17	18	Rc 1/4	6,5			
3TPF	R 3/8	43	47	43	38	Hex.21	21	Rc 3/8	10			
4TPF	R 1/2	103	113	104	45	Hex.29	24	Rc 1/2	13			
6TPF	R 3/4	166	181	167	51	Hex.35	28	Rc 3/4	17			
8TPF	R 1	321	350	323	60	Hex.41	36	Rc 1	26			
10TPF	R 1 1/4	567	615	573	64	Hex.54 *3	39	Rc 1 1/4	32			
12TPF	R 1 1/2	703	763	630	75	Hex.58 *4	45	Rc 1 1/2	38			
16TPF	R 2	1.226	1.374	1.190	83	77 x ø82	51	Rc 2	50			

Stecker TPN type (für Geflechtschlauchanschluss)



Modell	Anwendun	g (Schlauch) *5	Mas	se (g)		Abn	nessungen	(mm)	c øB 18 5,5 21 8,5 24 11			
Iviodeli	Größe (mm)	Schlauchwandstärke (mm)	Brass	Stainless steel	L	H1(WAF)	H2(WAF)	C	øB			
2TPN-60	ø6 x ø11	2,5±0,25	60	55	(47)	Hex.19	Hex.19	18	5,5			
3TPN-90	ø9 x ø15	3±0.3	93	87	(52)	Hex.23	Hex.24	21	8,5			
4TPN-120	ø12 x ø18	3 ±0,3	140	130	(60)	Hex.27	Hex.27	24	11			
4TPN-150	ø15 x ø22	3.5±0.35	182	170	(68)	Hex.30	Hex.30	24	13			
6TPN-190	ø19 x ø26	3,510,55	261	245	(76)	Hex.35	Hex.35	28	17			
8TPN-250	ø25 x ø33	4±0,4	461	427	(96)	Hex.41	Hex.41	36	23			

Buchse TSH type (Schlauchstutzen)

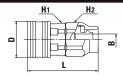


NA	Anwendung		Masse (g)			Abmo	essungen	(mm)	
Modell	(Schlauch)	Steel	Brass	Stainless steel	L	øD	Α	øΤ	øB
1TSH	1/8"	24 *1	26	24	40	17,5	20	6,5	3
2TSH	1/4"	63	69	64	55	24	29	8	5
3TSH	3/8"	95	104	96	62	28	32	11	7
4TSH	1/2"	176	192	177	74	35	39	15	10
6TSH	3/4"	348	379	350	90	45	48	21	15
8TSH	1"	570	605	570	102	58	57	27	19
10TSH	1 1/4"	840	910	850	117	69	70	34,5	26
12TSH	1 1/2"	1.060	1.140	1.070	128	75	75	41	32
16TSH	2"	2.095	2.251	2.100	141	98	80	54	40

TSM type (Außengewinde) Buchse

Modell	Anwendung		Masse (g))	Abmessungen (mm)					
Wodell	Anwendung	Steel	Brass	Stainless steel	L	øD	H(WAF)	T R 1/8 R 1/4 R 3/8 R 1/2 R 3/4 R 1 R 1 1/4	øB	
1TSM	Rc 1/8	25 *1	27	26	30	17,5	Hex.14	R 1/8	4,5	
2TSM	Rc 1/4	66	72	67	42	24	Hex.19	R 1/4	6,5	
3TSM	Rc 3/8	99	108	100	46	28	Hex.23	R 3/8	10	
4TSM	Rc 1/2	178	194	179	56	35	Hex.29	R 1/2	13	
6TSM	Rc 3/4	343	374	346	65	45	Hex.38	R 3/4	18	
8TSM	Rc 1	629	665	633	76	58	Hex.50	R 1	24	
10TSM	Rc 1 1/4	950	1.010	955	86	69	54 x ø64	R 1 1/4	32	
12TSM	Rc 1 1/2	1.180	1.275	1.190	95	75	58 x ø70	R 1 1/2	38	
16TSM	Rc 2	2.040	2.190	2.060	108	98	77 x ø82	R 2	49	

Buchse TSF type (Innengewinde)



Modell	Anwenduna		Masse (g)		Abmessu	ngen (mm)	
iviodeli	Anwendung	Steel	Brass	Stainless steel	L	øD	H(WAF)	Т
1TSF	R 1/8	25 *1	27	25	27	17,5	Hex.14	Rc 1/8
2TSF	R 1/4	57	62	57	32	24	Hex.19	Rc 1/4
3TSF	R 3/8	83	90	83	35	28	Hex.23	Rc 3/8
4TSF	R 1/2	153	167	154	42	35	Hex.29	Rc 1/2
6TSF	R 3/4	288	314	289	48	45	Hex.38	Rc 3/4
8TSF	R 1	575	607	575	59	58	Hex.50	Rc 1
10TSF	R 1 1/4	821	888	825	64	69	54 x ø64	Rc 1 1/4
12TSF	R 1 1/2	1.003	1.064	1.005	71	75	58 x ø70	Rc 1 1/2
16TSF	R 2	1.765	1.880	1.770	80	98	77 x ø82	Rc 2

Buchse TSN type (für Geflechtschlauchanschluss)

Na	Anwendur	IG (Schlauch) *5	Mas	se (g)		Abn	essungen	(mm)	
Modell	Größe (mm)	Schlauchwandstärke (mm)	Brass	Stainless steel	L	øD	H1(WAF)	H2(WAF)	øB
2TSN-60	ø6 x ø11	2,5±0,25	91	84	(49)	24	Hex.19	Hex.19	5,5
3TSN-90	ø9 x ø15	3±0.3	139	129	(54)	28	Hex.23	Hex.24	8,5
4TSN-120	ø12 x ø18	3 ±0,3	222	206	(62)	35	Hex.29	Hex.27	11
4TSN-150	ø15 x ø22	3,5±0,35	255	237	(70)	35	Hex.30	Hex.30	13
6TSN-190	ø19 x ø26	3,510,55	435	408	(81)	45	Hex.38	Hex.35	17
8TSN-250	ø25 x ø33	4±0,4	677	633	(93)	58	Hex.50	Hex.41	23

^{*1: 1}TSP-Stahl ist eine Sonderanfertigung. *2: Edelstahl: 54 x ø 60 *3: Edelstahl: 54 x ø 59 *4: Edelstahl: 58 x ø 65 *5: Geflechtschläuche für TPN type und TSN type sollten aus Weich-PVC hergestellt und mit Verstärkungsfäden gewebt sein. Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherh

[•] Kohlenwasserstofffett wird auf den Gewindeteil der Edelstahlmutter für TPN type und TSN type aufgetragen, um ein Festfressen zu verhindern.

Für Niederdruck **TSP Cupla Buchse mit Kugelhahn** Für allgemeine Niederdruckanwendungen

Einteilige Ausführung von Buchse und Kugelhahn des TSP Cuplas. Ein Hülsenstopper-Mechanismus verhindert ein versehentliches Lösen während des **Anschlusses.** (wenn das Ventil geöffnet ist)

- Das Buchsenventil kann geöffnet und geschlossen werden, während Buchse und Stecker miteinander verbunden sind.
- Das Kugelhahn-Design sorgt für einen hohen Volumenstrom.
- Hochviskose Fluids wie z. B. Fett können angewendet werden.

Technische Daten									
Modell	BV-2TSF	BV-3TSF	BV-	4TSF	BV-6TS	SF BV-8TSF			
Größe (Gewinde)	1/4"	3/8"	1/	/2"	3/4"	1"			
Gehäusewerkstoff	Brass								
Druckeinheit	MPa kgf/cm² Bar				Bar	PSI			
Betriebsdruck	1,0	10			10	145			
Diahtungamatarial		Dichtungsr	naterial	Kenna	zeichnung	Betriebstemperaturbereic			
Dichtungsmaterial Betriebstemperaturbereich	Cupla-Teil	Fluoro ru	ıbber		FKM	5 °C his +120 °			
•	Kugelhahnteil	Fluoropolym	ner resin		-	J U DIS T 120			

Max. Anzuç	Max. Anzugsdrehmoment Nm {kgf⋅cm}										
Modell	BV-2TSF	BV-3TSF	BV-4TSF	BV-6TSF BV-8TS							
Drehmoment	9 {92}	12 {122}	30 {306}	50 {510}	65 {663}						

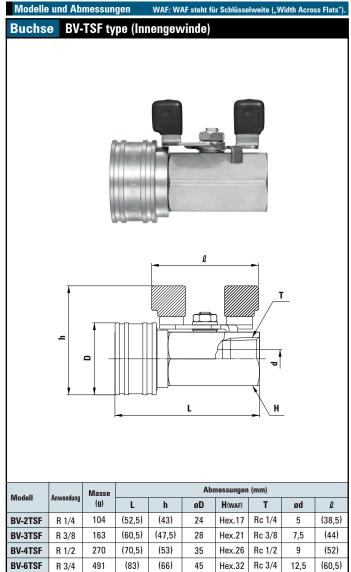
Strömungsrichtung

Kann mit dem Stecker für TSP Cupla in gleicher Größe angeschlossen werden.

Min. Querschnit	Min. Querschnittsfläche (mm²)											
Modell	BV-2TSF	BV-3TSF	BV-4TSF	BV-6TSF	BV-8TSF							
Min. Querschnittsfläche	19,6	44,1	63,6	122	201							

Wert nur vom BV-Typ. Der Mindestquerschnitt kann je nach Endkonfiguration des Steckers variieren.

Eignung für Vakuum


Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

[Testbedingungen] • Fluid: Hydraulic oil • Temperatur: 30 $^{\circ}$ C \pm 5

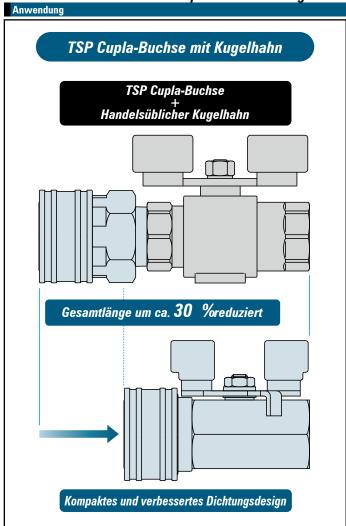
 Fluidviskosität: 32 x 10⁻⁶ m²/s
 Dichte: 0,87 x 10³ kg/m³ ① BV-2TSF ② BV-3TSF ④ BV-6TSF Druckverlust in MPa {kgf/cm²} Volumenstrom in I/min

BV-8TSF

904

(102,5)

(77)


58

Hex.41

Rc 1

16

(74,5)

Ein Verbindungsteil zwischen einer TSP Cupla-Standardbuchse

und einem handelsüblichen Kugelhahn entfällt zur besseren

Abdichtung, und die Gesamtlänge reduziert sich um ca. 30 %.

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende "Anleitungsblatt" durch.

Für Mitteldruck

SP Cupla Typ A

Für allgemeine Anwendungen mittlerer Drücke

Für Mitteldruckanwendungen, mit automatischen Absperrventilen sowohl in der Buchse als auch im Stecker. Verschiedene Gehäusematerialien, Größen und Endkonfigurationen. Stecker mit Außengewindeende sind ebenfalls erhältlich.

- Automatische Absperrventile in Buchse und Stecker verhindern das Austreten des Fluids beim Trennen.
- Erhältlich in verschiedenen Standardgehäusematerialien, Größen und Endkonfigurationen, um den unterschiedlichen Anwendungen und Betriebssituationen gerecht zu werden.

Ein neues selbstausrichtendes Ventildesign sorgt für bessere Abdichtung

Das neue Design des Ventilkopfes ermöglicht eine sanfte, selbstausrichtende Rückkehr in die Ausgangsposition beim Abziehen von Buchse und Stecker. Dieser Mechanismus erhöht die Dichtungssicherheit der einzelnen Buchsen bzw. Stecker im abgezogenen Zustand (Typ 1 bis 8SP-A)

Technische Date	Technische Daten									
Gehäusewerkstoff			Bra	ass		Stainless s	steel (SUS304	4), Steel (Nic	kel plated)	
Größe (Gewinde)	1/8", 1/4" 3/8"	1/2", 3/4" 1"	1 1/4" 1 1/2"	2"	1/8", 1/4" 3/8"	1/2", 3/4" 1"	1 1/4" 1 1/2"	2"		
	MPa	5,0	3,0	2,0	1,5	7,5	4,5	3,0	2,0	
Betriebsdruck	kgf/cm ²	51	31	20	15	76	46	31	20	
Dottiobation	Bar	50	30	20	15	75	45	30	20	
	PSI	725	435	290	218	1090	653	435	290	
			smaterial	Kennze	chnung	Betriebstemp	Betriebstemperaturbereich		ierke	
Dichtungsmaterial * Betriebstemperaturbereich		Nitrile	rubber	NBR	(SG)	20 °C bis	s +80 °C			
		Fluoro	rubber	FKM (K-100)	20 °C bis	+180 °C	Standard	dmaterial	
	Ethylene- rub	propylene ber	EPDM	(EPT)	40 °C bis	+150 °C				

- Stecker mit Außengewinde und Nitrilkautschuk oder Ethylen-Propylen-Kautschuk sind Sonderanfertigungen
- * Erhältliche Dichtungsmaterialien für Stahlgehäuse sind Nitril- und Fluorkautschuk.

Max. Anzugsdrehmoment Nm {kgf⋅cm}										·cm}
Größe (Gewi	inde)	1/8"	1/4"	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
	Stahl	9 {92}	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}	260 {2652}	280 {2856}	500 {5100}
Drehmoment	Messing	5 {51}	9 {92}	12 {122}	30 {306}	50 {510}	65 {663}	150 {1530}	180 {1836}	260 {2652}
	Edelstahl	9 {92}	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}	260 {2652}	280 {2856}	500 {5100}

Stecker mit Außengewinde sind nur aus Messing erhältlich.

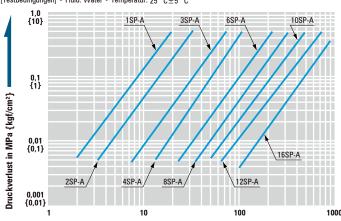
Strömungsrichtung

Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Austauschbarkeit

Verschiedene Größen sind nicht untereinander austauschbar. Austauschbar mit herkömmlichem SP Cupla in gleicher Größe

* Austauschbar mit SP-V Cuplas, aber beachten Sie dabei den Volumenstrom.


Min. Quersch	nittsflä	che							(mm²)
Modell	1SP-A	2SP-A	3SP-A	4SP-A	6SP-A	8SP-A	10SP-A	12SP-A	16SP-A
Min Ouerechnittefläche	1./	26	E1	72	170	220	205	552	000

Eignung für Vakuum	1,3	x 10 ⁻¹ Pa {1 x 10 ⁶ mmHg}
nur Buchse	nur Stecker	Bei Anschluss
<u>_</u>	_	hatriahsharait

Die Beimischung von Luft beim Anschließen Kann je nach Einsatzbedingungen variieren. (r									(ml)
Modell 1SP-A 2SP-A 3SP-A 4SP-A 6SP-A 8SP-A 10SP-A 12SP-A 16S								16SP-A	
Volumen der Luftbeimischung	0,6	1,1	2,7	3,9	11	25	29	45	84

Verschüttetes Volumen pro Trennung Kann je nach Einsatzbedingungen variieren.									(ml)
Modell	1SP-A	2SP-A	3SP-A	4SP-A	6SP-A	8SP-A	10SP-A	12SP-A	16SP-A
Verschüttungsvolumen	0,4	0,8	2,1	3,4	9,5	15	29	45	84

Volumenstrom – Druckverlustcharakteristi

Volumenstrom in I/min

77

Rc 2

Modelle und Abmessungen

6P-A

8P-A

10P-A

12P-A

16P-A

R 3/4

R 1

R 1 1/4

R 1 1/2

R 2

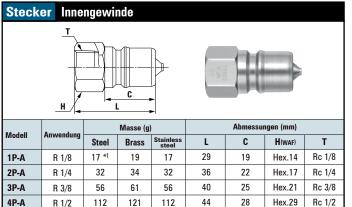
190

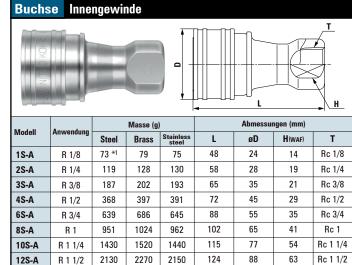
311

590

870

1540


205


333

630

920

1640

3310

132

52 Die Fotos oben zeigen eine Stahlkupplung. • Das Erscheinungsbild der Edelstahlkupplung (SUS304) unterscheidet sich geringfügig von dem der obigen Fotos.

36

40

45

49

Hex.35

Hex.41

Hex.54 *2

Hex.63 *3

77 x ø84

Rc 3/4

Rc 1

Rc 1 1/4

Rc 1 1/2

16S-A

R 2

3280

3510

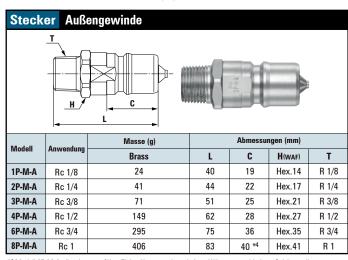
*1 1P-A (Stahl) und 1S-A (Stahl) sind Sonderanfertigungen. *2 Edelstahl: 54 x ø59 *3 Edelstahl: 63 x ø67

190

310

620

880


1560

52

62

70

75

^{*4} Modell 8P-M-A gibt eine ungefähre Einbaulänge an, da es keinen Höhenunterschied am Gehäuse gibt

Für Mitteldruck

Hot Water Cupla HW Type

Für Temperierleitungen

* Dieses Produkt ist für den Einsatz mit Wasser von -20 °C bis +180 °C ausgelegt. Bei Verwendung mit anderen Fluids ist die Eignung des Dichtungsund Gehäusewerkstoffs zu prüfen.

Eingesetzt wird der am besten geeignete Gummi für Heißwasseranwendungen. Bestens geeignet für Heißwasseranwendungen wie z.B. Kunststoff-Formteile.

- Die Sicherheitsverriegelung verhindert ein versehentliches Trennen durch Vibrationen oder Stöße.
- Vernickelt auf den flüssigkeitsberührten Teilen zur Verbesserung der Korrosionsbeständigkeit.
- Die Buchse hat einen doppelten O-Ring für eine bessere Abdichtung.

Technische Daten							
Gehäusewerkstoff	Brass (Nickel plated)						
Größe (Gewinde)	Stecker: R 1/	Stecker: R 1/4, R 3/8, R 1/2 / Buchse: Rc 1/4, Rc 3/8, Rc 1/2					
Druckeinheit	MPa	MPa kgf/cm² Bar PSI					
Betriebsdruck	2,0	20	20	290			
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Betriebstemperaturbereich	Fluoro rubber	FKM (X-100)	20 °C bis +180 °C	Standardmaterial			

Max. Anzugsdrehmome	Nm {kgf·cm}		
Größe (Gewinde)	1/4"	3/8"	1/2"
Drehmoment	9 {92}	12 {122}	30 {306}

Verwenden Sie bei der Montage oder Demontage immer einen Schraubenschlüssel/Steckschlüssel in der richtigen Größe am Innensechskant des Buchsen-/Steckergehäuses.

Strömungsrichtung

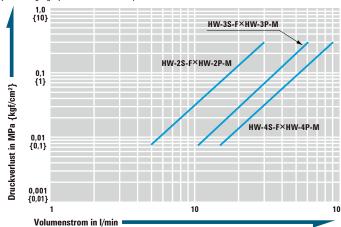
Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Austauschbarkeit

Verschiedene Größen von Buchsen und Steckern können nicht miteinander verbunden werden. SP Cupla Type A und HW Type Cuplas gleicher Größe können unabhängig von der Endkonfiguration miteinander verbunden werden.

Der SP Cupla Type A hat jedoch andere Dichtungswerkstoffeigenschaften, sodass sich die Produktspezifikationen und die Haltbarkeit unterscheiden. Führen Sie Leistungsbewertungsprüfungen unter Ihren tatsächlichen Betriebs- sowie Arbeitsbedingungen des Produkts durch.

Min. Querschnittsfläche					
Modell	HW-2S-F × HW-2P-M	HW-3S-F × HW-3P-M	HW-4S-F × HW-4P-M		
Min. Querschnittsfläche	26	51	73		

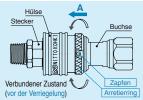

Eignung für Vakuum	1,3 ×	10 ⁻¹ Pa {1 × 10 ³ mmHg}
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit

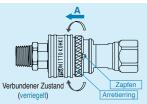
Die Beimischung von Luft beim Anschließen Kann je nach Einsatzbedingungen variieren. (ml)						
Modell	HW-2S-F × HW-2P-M HW-3S-F × HW-3P-M HW-4S-F × HW-4P-M					
Luftvolumen	1,2	2,7	3,9			

Verschüttetes	Verschüttetes Volumen pro Trennung Kann je nach Einsatzbedingungen variieren.						
Modell	HW-2S-F × HW-2P-M HW-3S-F × HW-3P-M HW-4S-F × HW-4P-						
Verschüttungsvolumen	0,8	2,1	3,2				

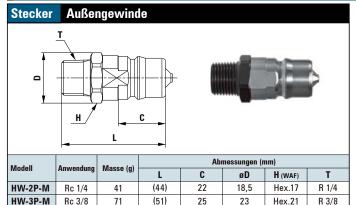
Volumenstrom – Druckverlustcharakteristik

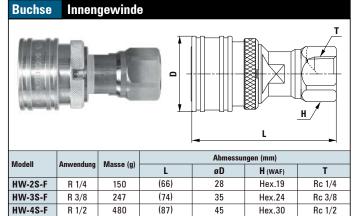
[Testbedingungen] • Fluid: Water • Temperatur: 25 $^{\circ}$ C \pm 5 $^{\circ}$ C


Sicherheitsverriegelung (Hülsenverriegelung)


Vorgehensweise beim Verriegeln

Schieben Sie den Arretierring in Pfeilrichtung A und drehen Sie ihn gleichzeitig. Wenn der Stopper mit dem flacheren Ausschnitt am Arretierring ausgerichtet ist, wird der Cupla verriegelt.




Vorgehensweise beim Entriegeln

Schieben Sie den Arretierring in Pfeilrichtung A und drehen Sie ihn gleichzeitig. Wenn der Stopper mit dem tieferen Ausschnitt am Arretierring ausgerichtet ist, wird der Cupla entriegelt.

Modelle und Abmessungen

Ungefähre Zeit für den Austausch von Ventil/O-Ring

(62)

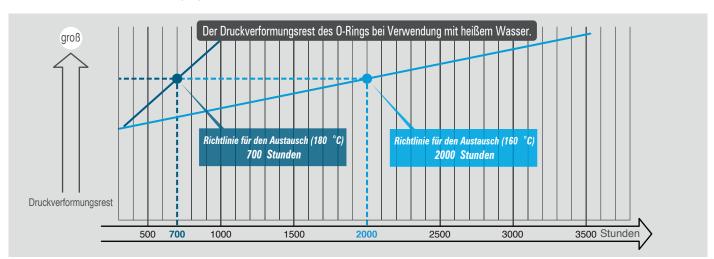
28

30

Hex.27

R 1/2


149


Testbedingungen

Rc 1/2

HW-4P-M

• Testgerät: Werkzeugtemperiermaschine • Fluid: Reines Wasser • Testtemperatur: 160 °C, 180 °C • Testbedingungen: Dauertest mit angeschlossenem Cupla

∆ Vorsicht

*Heißwasser-Dauerdurchflusstest durch einen Werkzeugtemperierregler Ventil: Für Dauerbetrieb von 3000 Stunden bei 160 °C/1000 Stunden bei 180 °C

O-Ring: Für Dauerbetrieb von 2000 Stunden bei 160 °C/700 Stunden bei 180 °C

Obwohl wir bestätigt haben, dass es keine Leckage gibt, handelt es sich nicht um einen garantierten Wert, sondern nur um unseren experimentellen Wert. Bitte beachten Sie die oben genannten Zeiten nur als Anhaltspunkt. Die Haltbarkeit der Dichtung hängt von den Einsatzbedingungen des Kunden ab. (Anzahl der Verbindungen/Trennungen, Fluidzusätze usw.)

- Luft wird zum Zeitpunkt des Anschlusses zugemischt. Bitte spülen Sie die Luft an der Geräteseite, wenn Sie mit heißem Wasser arbeiten.
- · Werden Zusätze in das Wasser eingemischt oder die Rohrleitung mit Dampf gefüllt, verringert sich die Lebensdauer der Dichtung Wenn Sie in einer solchen Umgebung arbeiten, führen Sie einen Leistungsbewertungstest gemäß dem tatsächlichen Produkt durch

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende "Anleitungsblatt" durch

Für Mitteldruck Zerospill Cupla Niedriger Überlauf für den Einsatz bei mittlerem Druck

Ein einzigartiges Dichtungsdesign reduziert sowohl das Verschütten von Flüssigkeiten als auch das Eindringen von Luft.

- Das neue Ventildesign bietet eine leichtgängige Bewegung ohne Reibung.
- Push-to-connect-Ausführung.
- Die Vielfalt der Gehäusewerkstoffe, -größen und -konfigurationen wurde standardisiert, um einem breiten Anwendungsspektrum gerecht zu werden.
- Automatische Absperrventile in Buchse und Stecker verhindern das Austreten des Fluids beim Trennen.

Technische Daten								
Gehäusewerkstoff	Brass Stainless steel (SUS 304)							
Größe (Gewinde)		1/4", 3/8", 1/2", 3/4", 1"						
Druckeinheit	MPa	kgf/cm²	Bar	PSI				
Betriebsdruck	3,5	35	35	508				
	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke				
Dichtungsmaterial	Nitrile rubber	NBR (SG)	20 °C bis +80 °C	Standardmaterial				
Betriebstemperaturbereich	Fluoro rubber	FKM (X-100)	20 °C bis +180 °C	Standardmaterial				
	Ethylene-propylene rubber	EPDM (EPT)	40 °C bis +150 °C	Standardmaterial				

Hinweis: Die zu verwendenden Fluids sind vom Gehäusewerkstoff und vom Dichtungsmaterial abhängig. Der zulässige Betriebstemperaturbereich ist von den Betriebsbedingungen abhängig.

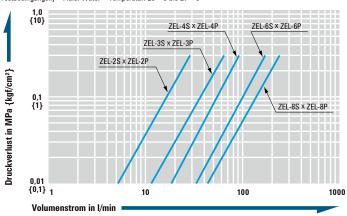
I	Max. Anzugsdrehmoment Nm {kgf⋅cm}								
Größe (Gewinde)		1/4"	3/8"	1/2"	3/4"	1"			
Dr	Drehmoment	Brass	9 {92}	12 {122}	30 {306}	50 {510}	65 {663}		
DI		Stainless steel	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}		

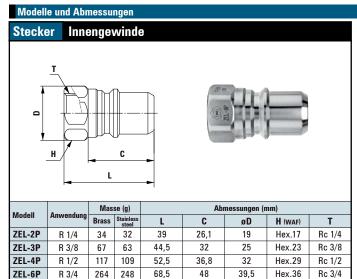
Strömungsrichtung
Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.
STEP CHARLES CHARLES

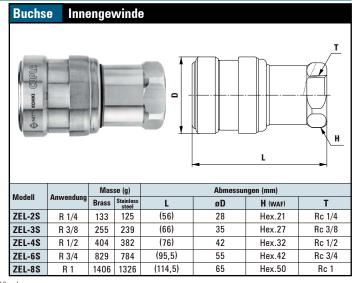
Buchsen und Stecker verschiedener Größen können nicht miteinander verbunden werden.

Min. Querschnittsfläche (mm²)									
Modell	ZEL-2SP	ZEL-3SP	ZEL-4SP	ZEL-6SP	ZEL-8SP				
Min. Querschnittsfläche	31	60,5	86,5	160,6	188,7				

Eignung für Vakuum	1,3 :	x 10 ⁻¹ Pa {1 x 10 ³ mmHg}
nur Buchse	nur Stecker	Bei Anschluss
_	-	betriebsbereit


Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren. (m.										
Modell	ZEL-2SP	ZEL-3SP	ZEL-4SP	ZEL-6SP	ZEL-8SP					
Volumen der Luftbeimischung	0,16	0,21	0,37	1,12	1,52					


Das Verschüttetes Volumen pro Trennung der Verbindung kann je nach Einsatzbedingungen variieren. (ml)									
Modell ZEL-2SP ZEL-3SP ZEL-4SP ZEL-6SP ZEL-8SP									
Verschüttungsvolumen	0,06	0,12	0,20	0,43	0,55				


Wiederholtes An- und Abkuppeln von Cuplas oder die Verwendung von Fluids mit niedriger Viskosität kann zum Verschütten führen

Volumenstrom - Druckverlustcharakteristik

[Testbedingungen] • Fluid: Water • Temperatur: 25

⁵⁶ Die Fotos oben zeigen die Edelstahlmodelle ZEL-8P und ZEL-8S. Die Profile der Messingkupplungen sind die gleichen wie bei den Edelstahlkupplungen

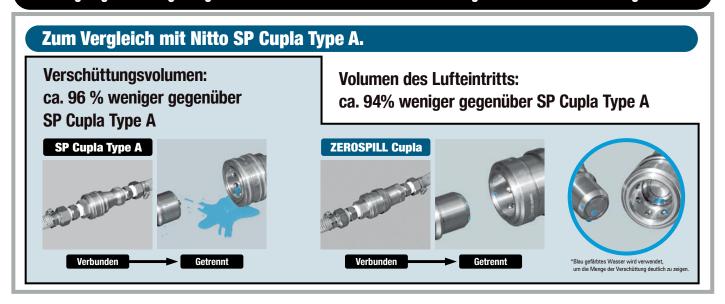
76,5

359

339

R 1

ZEL-8P


Haupteigenschaften

Rc 1

Hex.42

46

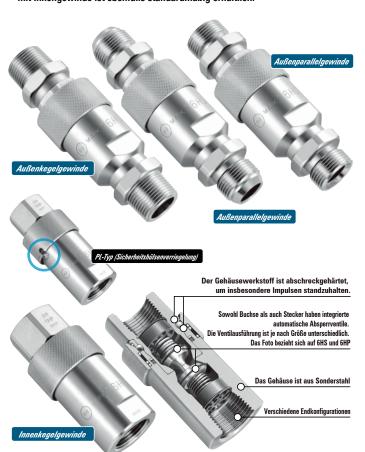
Ein einzigartiges Dichtungsdesign reduziert sowohl das Verschütten von Flüssigkeiten als auch das Eindringen von Luft

Zuverlässiges Null-Reibungsventil

Das neue Ventildesign bietet eine leichtgängige Bewegung ohne Reibung, wodurch das Risiko von Fehlfunktionen durch eine Abnutzung der Ventilteile reduziert wird.

HSP Cupla

Für Hydraulikdruck von 14,0 bis 20,6 MPa {142 bis 210 kgf/cm²}



Edelstahl-Spezialgehäuse ist widerstandsfähig gegen Vibrationen und Stöße! Außen- und Innengewinde sind verfügbar. Die niedrige Druckverlustcharakteristik eignet sich für Anwendungen in der Hydraulik.

- · Abschreckgehärtetes Edelstahlgehäuse! Starke Schlagfestigkeit, besonders gegen Stöße.
- Automatische Absperrventile in Buchse und Stecker verhindern das Austreten des Fluids beim Trennen. Einfach in der Handhabung.
- Neben dem konventionellen Innengewinde sind auch Außengewinde (Außenkegelgewinde, Außenparallelgewinde mit 30° Bördelrand und Außenparallelgewinde mit 30° Kegelsitz) erhältlich. Außengewinde sind speziell für den direkten Anschluss an Hydraulikaggregate konzipiert.
- Die Ausführung mit Außenparallelgewinde entspricht sowohl der Metalldichtung als auch der O-Ring-Dichtung. (Bei O-Ring-Dichtungen können handelsübliche O-Ringe verwendet werden.)
- Optionale HSP-DC Cuplas sind für Druckgießmaschinenanwendungen mit starken Druckschwankungen erhältlich.
- Die Gesamtlänge des Außengewindetyps ist kürzer als die des am Markt erhältlichen Innengewindetyps plus Umwandlungsnippel.
- Ein PL-Typ (Sicherheitshülsenverriegelung) für 2HS bis 8HS (außer 66HS) mit Innengewinde ist ebenfalls standardmäßig erhältlich.

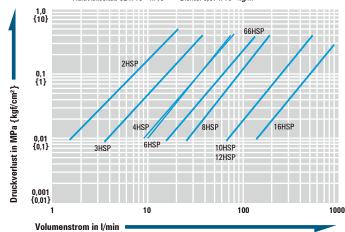
Technische Daten										
Gehäusewerkstoff			Special steel (Nickel plated)							
Größe (Gewinde)		1/4", 3/8", 1	/2", 3/4", 1"	1 1/4", 1 1/2"	2"					
	MPa	20	,6	18,0	14,0					
Retriehsdruck	kgf/cm ²	21	0	183	142					
Dottiobsuruok	Bar	20)6	180	140					
	PSI	29	90	2610	2030					
Dichtungsmaterial Betriebstemperaturbereich		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke					
		Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial					
		Fluoro rubber	FKM (X-100)	-20 °C bis +180 °C	auf Anfrage erhältlich					

Max. Ar	Max. Anzugsdrehmoment								Nm {kgf·cm}		
Größe (Gew	1/4"	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"			
	Innengewinde	28 {286}	45 {459}	90 {918}	100 {1020}	180 {1836}	290 {2958}	350 {3570}	500 {5100}		
Drehmoment	Außenkegelgewinde	28 {286}	45 {459}	90 {918}	100 {1020}	_	-	_	_		
	Paralleles Außengewinde	25 {255}	35 {357}	60 {612}	120 {1224}	_	ı	_	_		

Strömungsrichtu	ng					
Der Fluidstrom kann b	oidirektional sein,	wenn Buchs	e und Stecl	ker verbunde	n sind.	
4	P 4 18 18 18 18 18 18 18 18 18 18 18 18 18		MON WARN (M)	u ₀		

Austauschbarkeit

4HSP mit 6HSP oder 10HSP mit 12HSP können miteinander verbunden werden. Andere Kombinationen verschiedener Größen sind nicht anschließbar.

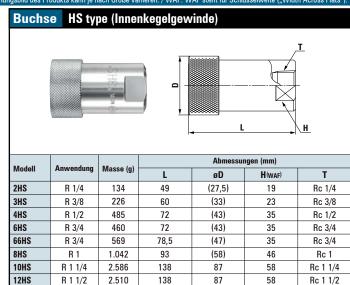

Min. Querschnittsfläche (mm									
Modell	2HSP	3HSP	4HSP	6HSP	66HSP	8HSP	10HSP	12HSP	16HSP
Min. Querschnittsfläche	21	37	77	77	145	203	595	595	1084

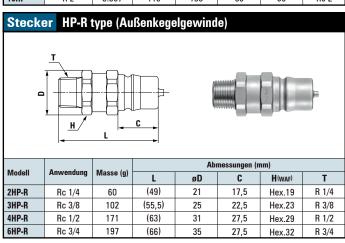
Eignung für Vakuum	1,3 :	x 10 ⁻¹ Pa {1 x 10 ³ mmHg}
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit

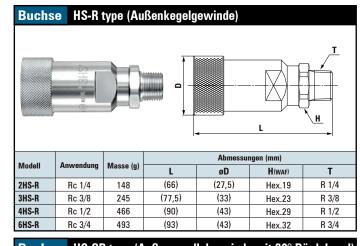
Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren.									
Modell	2HSP	3HSP	4HSP	6HSP	66HSP	8HSP	10HSP	12HSP	16HSP
Luftvolumen	0.7	1.9	3.5	3.5	8.2	12.4	44	44	156

Volumenstrom – Druckverlustcharakteristik

· Fluid: Hydraulic oil •Temperatur: 30 °C ± 5 °C •Dichte: 0,87 x 103 kg/m3 Fluidviskosität: 32 x 10-6 m²/s


Die Durchflussmenge des Außengewindetyps erhöht sich um 5 bis 10 $\,\%$ gegenüber dem des Innengewindetyps mit Umwandlungsnippel.


⚠Vorsichtsmaßnahmen für den Gebrauch


Es gibt keine Austauschbarkeit zwischen HSP Cupla und 210 Cupla oder 280 Cupla. Verbinden Sie diese nicht miteinander, auch wenn die Größen ähnlich sind

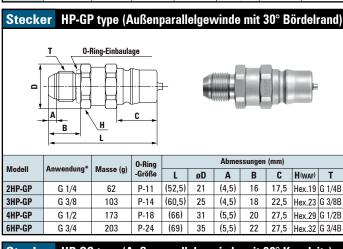
Stecker HP type (Innenkegelgewinde)

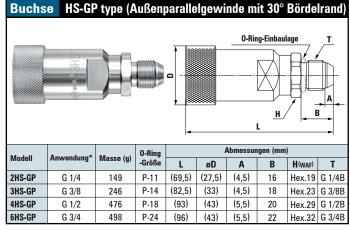
No. d. II	Anwenduna	B# (.)					
Modell	Modell Anwendung	Masse (g)	L	øD	C	H(WAF)	T
2HP	R 1/4	40	32	20,5	17,5	Hex.19	Rc 1/4
3HP	R 3/8	68	38	25	22,5	Hex.23	Rc 3/8
4HP	R 1/2	124	44	32	27,5	Hex.29	Rc 1/2
6HP	R 3/4	148	50	35	27,5	Hex.32	Rc 3/4
66HP	R 3/4	232	51	40	28	35	Rc 3/4
8HP	R 1	361	61	47	36	41	Rc 1
10HP	R 1 1/4	886	80	64	58	58	Rc 1 1/4
12HP	R 1 1/2	810	80	64	58	58	Rc 1 1/2
16HP	R 2	3.307	115	100	83	90	Rc 2

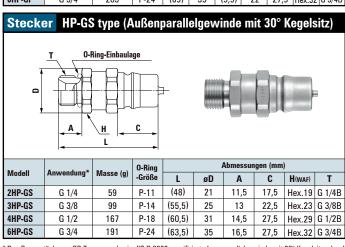
198

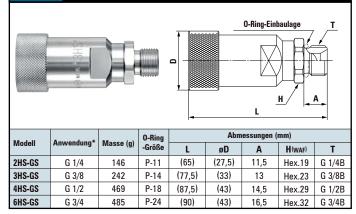
123

۸n


Rc 2


7.286


R 2


16HS

Buchse

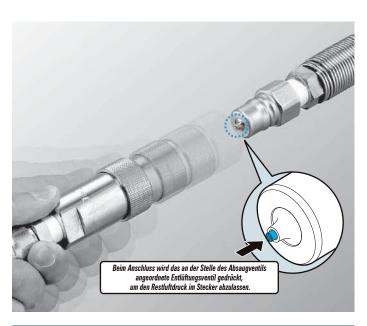
HS-GS type (Außenparallelgewinde mit 30° Kegelsitz)

Das Gegenstück zum GP-Typ muss das in JIS B 8363 spezifizierte Innenparallelgewinde mit 30° Kegelsitz oder die Kupplung mit 0-Ring-Dichtung sein Das Gegenstück zum GS-Typ muss das Innenparallelgewinde JIS B 8363 mit 30° Bördelrand oder die Kupplung mit 0-Ring-Dichtung sein

[•] Für die Modelle 2HS bis 8HS (außer 66HS) ist eine Hülsenstopperausführung erhältlich.

Hyper HSP Cupla

Verbindet Hydraulikleitungen auch mit Restluftdruck bis zu 20,6 MPa {210 kgf/cm²}



Die Spülfunktion befreit Sie von der lästigen Restluftdruckbeseitigung vor dem Anschluss und ermöglicht Ihnen eine effiziente und häufig durchführbare hydraulische Rohrleitungskupplung.

- Sowohl die Buchse als auch der Stecker sind mit automatischen Absperrventilen ausgestattet, um das Austreten von Fluids beim Trennen zu verhindern.
- Austauschbar mit HSP Cupla-Standardstecker oder -buchse in gleicher Größe.

Technische Daten							
Gehäusewerkstoff	Special steel (Nickel plated)						
Größe (Gewinde)	1/4", 3/8", 1/2", 3/4", 1"						
Druckeinheit	MPa	kgf/cm²	Bar	PSI			
Betriebsdruck	20,6	210	206	2990			
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial			

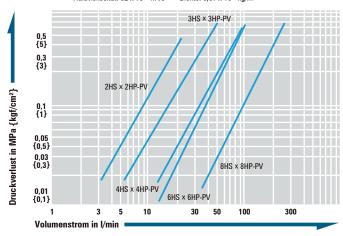
Max. Anzugsdrehmoment Nm {kgf·cm}							
Größe (Gewinde)	1/4"	3/8"	1/2"	3/4"	1"		
Drehmoment	28 {286}	45 {459}	90 {918}	100 {1020}	180 {1836}		

Strömungsrichtung Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Austauschbarkeit

Austauschbar mit HSP Cupla-Standardstecker oder -buchse in gleicher Größe.

Min. Querschnittsfläche (mm²)							
Modell	2HP-PV/2HS-PV	3HP-PV/3HS-PV	4HP-PV/4HS-PV	6HP-PV/6HS-PV	8HP-PV/8HS-PV		
Min. Querschnittsfläche	21	37	77	77	203		

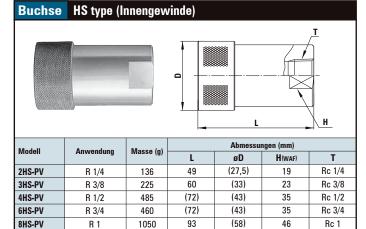

Eignung für Vakuum	x 10 ¹ Pa {1 x 10 ³ mmHg}	
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit

Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren.						
Modell	2HP-PV/2HS-PV	3HP-PV/3HS-PV	4HP-PV/4HS-PV	6HP-PV/6HS-PV	8HP-PV/8HS-PV	
Luftvolumen	0,7	1,9	3,5	3,5	12,4	

Anschlusslast unter Restdruck (als Referenz) (N)							
Restdruck/Modell	2HP-PV/2HS-PV	3HP-PV/3HS-PV	4HP-PV/4HS-PV	6HP-PV/6HS-PV	8HP-PV/8HS-PV		
bei 5,0 MPa	50	85	85	85	100		
bei 10,0 MPa	70	85	85	85	130		
bei 15,0 MPa	100	100	100	100	170		

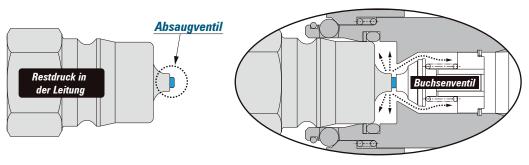
Volumenstrom – Druckverlustcharakteristik

• Fluid: Hydraulic oil • Temperatur: 30 °C \pm 5 Fluidviskosität: 32 x 10-6 m²/s



Hinweis: An der Leitung, an der der Restluftdruck verbleibt, muss entweder die Buchse oder der Stecker des Hyper HSP Cuplas verwendet werden. Das Gegenstück zum Hyper HSP muss entweder Stecker oder Buchse des Standard HSP Cuplas sein.

Modelle und Abmessungen


Stecker HP type (Innengewinde)

Modell	Anwendung	Masse (q)	Abmessungen (mm)					
Wouen		iviasse (y)	L	øD	C	H(WAF)	T	
2HP-PV	R 1/4	44	32	20,5	17,5	Hex.19	Rc 1/4	
3HP-PV	R 3/8	72	38	25	22,5	Hex.23	Rc 3/8	
4HP-PV	R 1/2	138	44	32	27,5	Hex.29	Rc 1/2	
6HP-PV	R 3/4	147	50	35	27,5	Hex.32	Rc 3/4	
8HP-PV	R 1	360	61	47	36	41	Rc 1	

Mechanismus zur Restdruckentlastung (oder Spülung)

Während des Anschlusses wird das mit einem Kreis gekennzeichnete Absaugventil geschoben und der Restdruck freigegeben

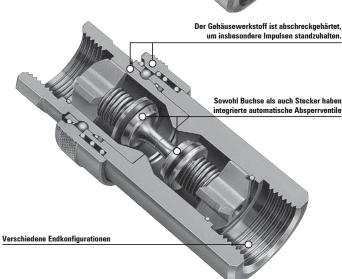
Hinweis: An der Leitung, an der der Restluftdruck verbleibt, muss entweder die Buchse oder der Stecker des Hyper HSP Cuplas verwendet werden. Das Gegenstück zum Hyper HSP muss entweder Stecker oder Buchse des Standard HSP Cuplas sein.

Der Hyper HSP Cupla kann unter dem Restdruck in der Leitung angeschlossen werden, nicht jedoch während der Druckbeaufschlagung.

Dies kann zu einer unvollständigen Verbindung, einer Verkürzung der Lebensdauer oder einem möglichen Herausfliegen des Ventils führen.

210 Cupla

Für Hydraulikdruck bis 20,6 MPa {210 kgf/cm²}



Standardmäßige hydraulische Cuplas für allgemeine Zwecke mit einem Betriebsdruck von bis zu 20,6 MPa. **Geringer Druckverlust, geeignet** für hydraulische Anlagen.

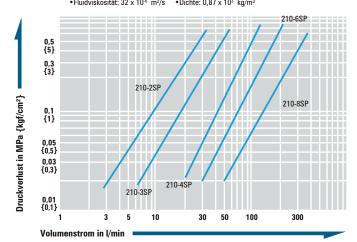
- Universelle hydraulische Cuplas mit einem Betriebsdruck von 20,6 MPa {210 kgf/cm²}.
- Die Konstruktion wurde entwickelt, um den Druckverlust auf ein Minimum zu reduzieren, und ist am besten für Hydraulikanwendungen geeignet, die einen großen Volumenstrom benötigen.
- Sowohl die Buchse als auch der Stecker sind mit automatischen Absperrventilen ausgestattet, die das Austreten von Fluids beim Trennen verhindern. Einfach in der Handhabung.

Technische Daten								
Gehäusewerkstoff	Special steel (Nickel plated)							
Größe (Gewinde)	1/4", 3/8", 1/2", 3/4", 1"							
Druckeinheit	MPa	kgf/cm²	Bar	PSI				
Betriebsdruck	20,6	210	206	2990				
Dichtungomotovial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke				
Dichtungsmaterial Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial				
•	Fluoro rubber	FKM (X-100)	20 °C bis +180 °C	auf Anfrage erhältlich				

Max. Anzugsdrehmoment Nm {kgf⋅cm}							
Größe (Gewinde)	1/4"	3/8"	1/2"	3/4"	1"		
Drehmoment	28 {286}	45 {459}	90 {918}	100 {1020}	180 {1836}		

Strömungsrichtung
Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.
-

Austauschbarkeit


Verschiedene Größen sind nicht untereinander austauschbar.

Min. Querschnittsfläche (mm²)						
Modell	210-2SP	210-3SP	210-4SP	210-6SP	210-8SP	
Min. Querschnittsfläche	24,5	42,8	77,4	146,5	235,6	

Eignung für Vakuum	1,3 Pa {1 x 16 mmHg}	
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit

Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren.								
Modell	210-2SP	210-3SP	210-4SP	210-6SP	210-8SP			
Luftvolumen	0,85	1,02	2,63	8,83	16,04			

• Fluid: Hydraulic oil •Fluid: Hydraulic oil •Temperatur: 30 °C ± 5 °C •Fluidviskosität: 32 x 10 ° m²/s •Dichte: 0.87 x 10 ° kg/m³

⚠Vorsichtsmaßnahmen für den Gebrauch

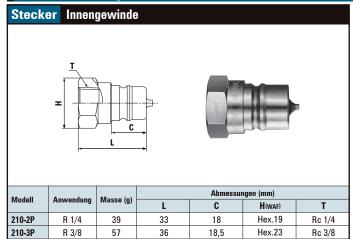
Es gibt keine Austauschbarkeit zwischen 210 Cupla und HSP Cupla oder 280 Cupla. Verbinden Sie diese nicht miteinander, auch wenn die Größen ähnlich sind.

R 1/2

R 3/4

R 1

90


195

293

210-4P

210-6P

210-8P

42,5

51

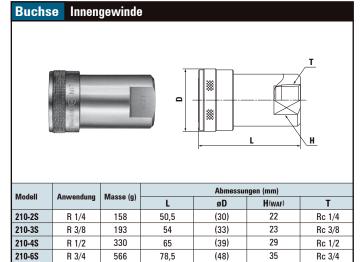
61

24

28

35

Hex.27


Hex.35

Hex.41

Rc 1/2

Rc 3/4

Rc 1

95

(55)

41

Rc 1

210-8S

R 1

861

HSU Cupla

Edelstahl-Cupla für Hochdruck bis 21,0 MPa {214 kgf/cm²}

Die Durchflussmenge wird um 14 bis 44 % erhöht, während gleichzeitig die gekuppelte Länge gegenüber dem S210 Cupla um mindestens 10 % reduziert wird.

- Das Gehäusematerial ist aus ausgezeichnetem korrosionsbeständigem Edelstahl
- Geeignet für den Einsatz in rauen Umgebungen wie z. B. im Offshore-Bereich.
- Der Hülsenstoppermechanismus kann nach dem Anschließen durch Drehen der Hülse aktiviert werden.
- Trotz des Edelstahlgehäuses ist der Betriebsdruck des HSU Cuplas mit 21,0 MPa vergleichbar mit dem von Cuplas mit Sonderstahlgehäusen wie der HSP Cupla-Serie.
- Sowohl die Buchse als auch der Stecker sind mit automatischen Absperrventilen ausgestattet, die das Austreten von Fluids beim Trennen der Verbindung verhindern.
- Hydrogenated nitrile rubber (HNBR) wird als Dichtungsmaterial für eine Vielzahl von Flüssigkeiten eingesetzt.

Technische Daten								
Gehäusewerkstoff		Stainless steel (SUS304)						
Größe (Gewinde)		1/4", 3/8", 1/2", 3/4", 1"						
Druckeinheit	MPa	kgf/cm² Bar				PSI		
Betriebsdruck	21,0		214	210		3050		
Dichtungsmaterial	Dichtungsmaterial		I Kennzeichnung		Betriebstemperaturbereich			
Betriebstemperaturbereich	Hydrogenated nitrile ru	ubber *	HNBR		-20	°C bis +120	°C	

Die im HSU Cupla verwendeten Dichtungsmaterialien sind nicht für Freon-Gas geeignet

Max. Anzugsdrehmome	Nm	{kgf∙cm}			
Größe (Gewinde)	1/4"	3/8"	1/2"	3/4"	1"
Drehmoment	28 {286}	35 {357}	70 {714}	100 {1020}	180 {1836}

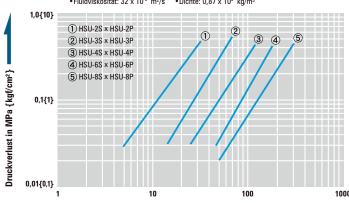
Strömungsrichtung

Der Fluidstrom kann bidirektional sein wenn Buchse und Stecker verbunden sind

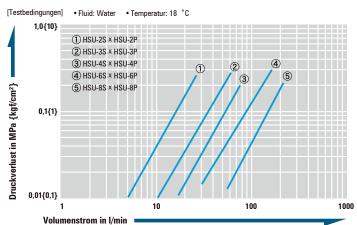
Austauschbarkeit

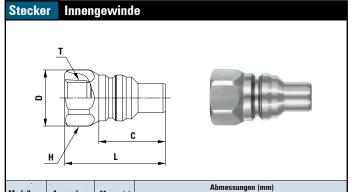
Buchsen und Stecker verschiedener Größen können nicht miteinander verbunden werden.

Min. Querschnittsfläche (m							
Modell	HSU-2SP	HSU-3SP	HSU-4SP	HSU-6SP	HSU-8SP		
Min. Querschnittsfläche	27,1	48,2	84,2	143,6	221,2		

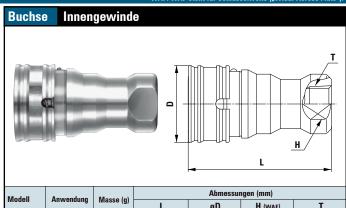

Eignung für Vakuum	1,3 x 10 ⁻¹ Pa {1 x 10 ³ mmH					
nur Buchse	nur Stecker	Bei Anschluss				
_	-	betriebsbereit				

Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren. (ml)							
Modell HSU-2SP HSU-3SP HSU-4SP HSU-6SP							
Volumen der Luftbeimischung	0,7	1,5	3,6	6,3	10,9		


Verschüttetes Volumen pro Trennung Kann je nach Einsatzbedingungen variieren. (ml)								
Modell	HSU-2SP	HSU-3SP	HSU-4SP	HSU-6SP	HSU-8SP			
Verschüttungsvolumen	0,6	1,7	3,0	6,8	11,2			

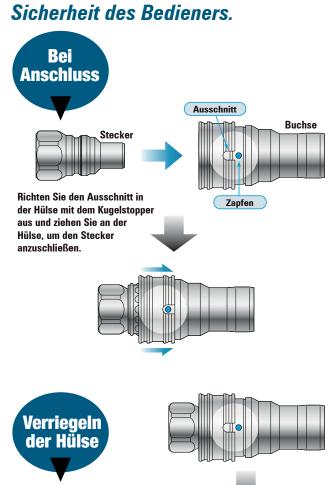

Volumenstrom – Druckverlustcharakteristik (Hydrauliköl/Wasser)

• Fluid: Hydraulic oil • Temperatur: 30 °C bis 32 °C • Fluidviskosität: 32 x 10⁻⁶ m²/s



Volumenstrom in I/min

Modell	Anwendung	Masse (g)	Abmessungen (mm)					
Wiodell	Allweildung	iviasse (y)	L	C	øD	H (WAF)	T	
HSU-2P	R 1/4	49	45,5	27,5	21	Hex.19	Rc 1/4	
HSU-3P	R 3/8	86	51,5	32	26,5	Hex.24	Rc 3/8	
HSU-4P	R 1/2	152	59	39	33	Hex.30	Rc 1/2	
HSU-6P	R 3/4	295	74	51,5	42	Hex.38	Rc 3/4	
HSU-8P	R 1	481	83	58	51	Hex.46	Rc 1	



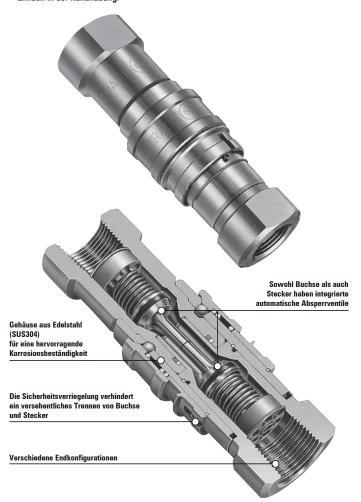
Modell	Anwendung	M (-)		Abmessungen (mm)			
Wouell	ieli Aliwelluuliy	Anwendung Masse (g) L		øD	H (WAF)	T	
HSU-2S	R 1/4	142	63	28	19	Rc 1/4	
HSU-3S	R 3/8	255	71,5	35	24	Rc 3/8	
HSU-4S	R 1/2	479	84	45	30	Rc 1/2	
HSU-6S	R 3/4	953	106	55	38	Rc 3/4	
HSU-8S	R 1	1432	118	65	46	Rc 1	

Hülsenstoppermechanismus

Der einfach zu bedienende Hülsenstoppermechanismus erhöht die

Verriegelt

Ohne Ausrichtung des Ausschnitts mit dem Kugelstopper ist eine Trennung nicht möglich.


Ein versehentliches Trennen wird verhindert.

Der Stopper ist zur besseren Verdeutlichung blau markiert.

Für Hochdruck S210 Cupla Edelstahl-Cupla für Hochdruck bis 20,6 MPa {210 kgf/cm²}

Edelstahl für eine hervorragende Korrosionsbeständigkeit! Der einzigartige "innere Dichtungsmechanismus" nimmt einen Betriebsdruck von bis zu 20,6 MPa auf.

- Das Gehäusematerial ist aus ausgezeichnetem korrosionsbeständigem Edelstahl (SUS304). Geeignet für den Einsatz unter schwierigen Bedingungen, wie z.B. in der Hochseeindustrie.
- Auch wenn das Produkt aus Edelstahl gefertigt ist, ermöglicht der einzigartige "innere Dichtungsmechanismus" einen Betriebsdruck von 20,6 MPa {210 kgf/cm²}, genau wie bei Sonderstahl.
- Die Sicherheitsverriegelung (Mechanismus zur Verhinderung des unbeabsichtigten Trennens) gewährleistet eine dichte und sichere Verbindung bei Vibrationen oder Stößen.
- Sowohl die Buchse als auch der Stecker sind mit automatischen Absperrventilen ausgestattet, die das Austreten von Fluids beim Trennen der Verbindung verhindern. Einfach in der Handhabung.

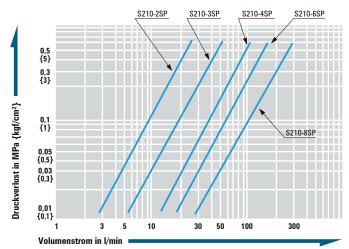
Technische Daten								
Gehäusewerkstoff		Stainless steel (SUS304)						
Größe (Gewinde)		1/4", 3/8",	1/2", 3/4", 1"					
Druckeinheit	MPa	kgf/cm²	Bar	PSI				
Betriebsdruck	20,6	210	206	2990				
	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke				
Dichtungsmaterial Betriebstemperaturbereich	Fluoro rubber	FKM (X-100)	-20 °C bis +180 °C	Standardmaterial				
	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Sonderanfertigung				

[•] Das Produkt wird mit einer Staubschutzkappe geliefert.

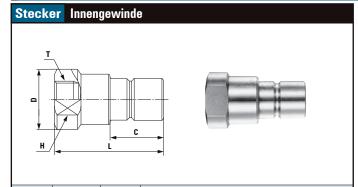
Max. Anzugsdrehmoment Nm -					
Größe (Gewinde)	1/4"	3/8"	1/2"	3/4"	1"
Drehmoment	28 {286}	35 {357}	70 {714}	100 {1020}	180 {1836}

Strömungsrichtung Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Verschiedene Größen sind nicht untereinander austauschbar.


Min. Querschnittsfläche (mn							
Modell	S210-2SP	S210-3SP	S210-4SP	S210-6SP	S210-8SP		
Min. Querschnittsfläche	24	47	84	153	233		

Eignung für Vakuum	gnung für Vakuum 1,3 Pa {1 x 16 n					
nur Buchse	nur Stecker	Bei Anschluss				
_	_	betriebsbereit				


Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren. (ml)								
Modell	S210-2SP	S210-3SP	S210-4SP	S210-6SP	S210-8SP			
Luftvolumen	0,8	1,6	3,2	6,3	14,3			

Volumenstrom – Druckverlustcharakteristik

• Fluid: Hydraulic oil • Fluidviskosität: 32 x 10-6 m²/s • Dichte: 0,87 x 103 kg/m3

Modelle und Abmessungen

80.4.0	Anwendung M	B# (.)	Abmessungen (mm)						
Modell		Masse (g)	L	C	øD	H(WAF)	T		
S210-2P	R 1/4	74	50,5	20	22	19	Rc 1/4		
S210-3P	R 3/8	127	59	24	28	24	Rc 3/8		
S210-4P	R 1/2	239	70,5	28	35	30	Rc 1/2		
S210-6P	R 3/4	446	81,5	35,5	44	38	Rc 3/4		
S210-8P	R 1	939	100	47,5	58	50	Rc 1		

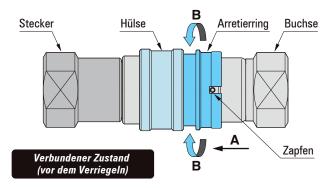
Buchse Innengewinde Abmessungen (mm) Masse (g) Modell H(WAF) Т S210-2S R 1/4 137 (59) Rc 1/4 S210-3S R 3/8 226 (68,5)32 24 Rc 3/8 S210-4S R 1/2 406 (81) 39,7 30 Rc 1/2

(97,5)

48

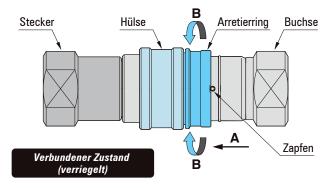
38

Rc 3/4

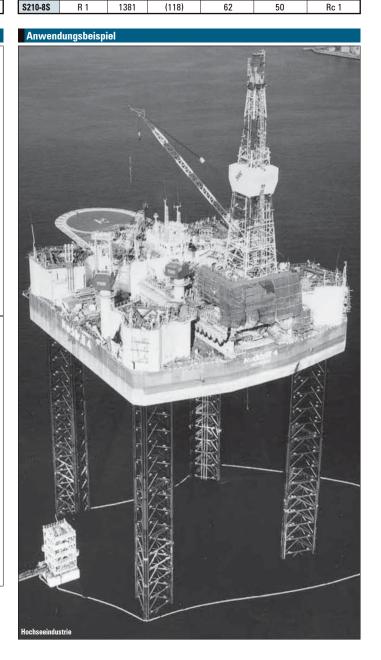

S210-6S

R 3/4

710


Bedienung der Sicherheitsverriegelung

Vorgehensweise beim Verriegeln



Schieben Sie den Arretierring in Richtung des Pfeils A und drehen Sie ihn gleichzeitig in beide Richtungen. Wenn der Stopper mit dem flachen Ausschnitt am Arretierring ausgerichtet ist, wird der Cupla verriegelt.

Vorgehensweise beim Entriegeln

Schieben Sie den Arretierring in Richtung des Pfeils A und drehen Sie ihn gleichzeitig in beide Richtungen. Wenn der Stopper mit dem tieferen Ausschnitt am Arretierring ausgerichtet ist, wird der Cupla entriegelt.

280 Cupla

Für Hydraulikdruck von bis zu 27,5 bis 31,5 MPa {281 bis 321 kgf/cm²}

Der generische Cupla meistert Hochdruckleitungen in Hydraulikanlagen! Geringer Druckverlust, ideal für hydraulische Anlagen geeignet.

- Entspricht der internationalen Norm ISO 7241-1A.
- Universelle hydraulische Cuplas mit einem Betriebsdruck von bis zu 27,5 bis 31,5 MPa {281 bis 321 kgf/cm²}.
- Die Konstruktion hält den Druckverlust extrem gering, besonders ideal für hydraulische Anwendungen, die hohe Durchflussmengen erfordern.
- Sowohl die Buchse als auch der Stecker sind mit automatischen Absperrventilen ausgestattet, um das Austreten von Fluids beim Trennen zu verhindern. Einfach in der Handhabung.
- Ein Gehäusewerkstoff aus Sonderstahl wird wegen seiner ausgezeichneten Festigkeit verwendet, und eine zusätzliche Abschreckhärtung wird durchgeführt, um Hydrodruckstößen standzuhalten.

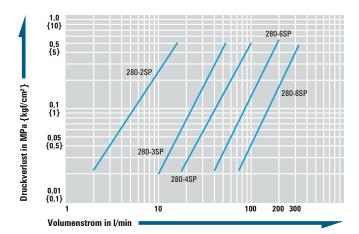
Technische Daten								
Gehäusewerkstoff	äusewerkstoff Special steel (Bright chromate conversion coating: silver)							
Größe (Gewinde)		1/4", 3/8" 1/2", 3/4", 1"						
	MPa	31	,5	27,5				
Retriehsdruck	kgf/cm ²	32	21	281				
Dottiobautuok	Bar	31	15	275				
	PSI	45	4570		90			
Dichtungsmaterial		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Betriebstemperaturbe	reich	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial			

Max. Anzugsdrehmoment Nm {kg							
Größe (Gewinde)	1/4"	3/8"	1/2"	3/4"	1"		
Drehmoment	28 {286}	40 {408}	80 {816}	100 {1020}	180 {1836}		

Strömungsrichtung Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Austauschbarkeit

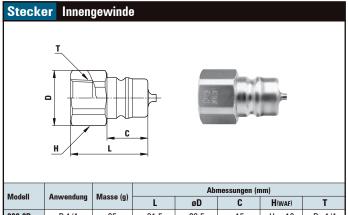
Verschiedene Größen können nicht miteinander verbunden werden.

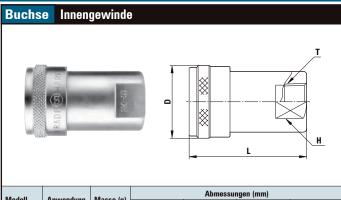

Min. Querschnittsfläche (m							
Modell	280-2SP	280-3SP	280-4SP	280-6SP	280-8SP		
Min. Querschnittsfläche	11,4	42,8	79,1	146,5	235,6		

Eignung für Vakuum	1,3 Pa {1 x 10 mm				
nur Buchse	nur Stecker	Bei Anschluss			
_	_	betriebsbereit			

Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren. (ml								
Modell 280-2SP 280-3SP 280-4SP 280-6SP 2								
Luftvolumen	0,37	1,02	2,63	8,83	16,04			

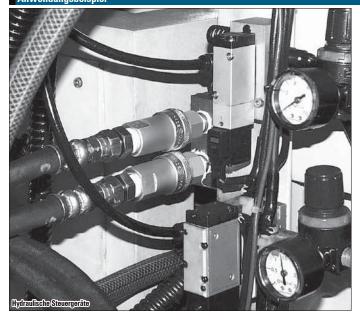
Volumenstrom - Druckverlustcharakteristik

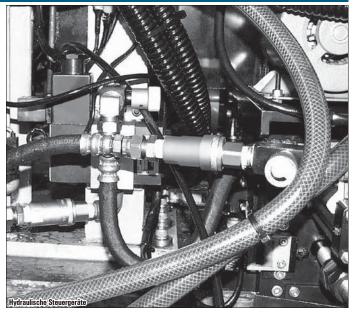

• Fluid: Hydraulic oil \bullet Temperatur: 30 $\,^{\circ}\text{C}\,\pm\,5\,^{\circ}\text{C}$ Fluidviskosität: 32 x 10-6 m²/s Dichte: 0.87 x 10³ kg/m³


⚠Vorsichtsmaßnahmen für den Gebrauch

Es gibt keine Austauschbarkeit zwischen 280 Cupla und HSP Cupla oder 210 Cupla. Verbinden Sie diese nicht miteinander, auch wenn die Größen ähnlich sind

Modelle und Abmessungen




280-2P	R 1/4	35	31,5	20,5	15	Hex.19	Rc 1/4		
280-3P	R 3/8	59	35	25	18,5	Hex.23	Rc 3/8		
280-4P	R 1/2	115	44	32	24,5	Hex.29	Rc 1/2		
280-6P	R 3/4	178	52,5	35	28	Hex.32	Rc 3/4		
280-8P	R 1	331	63,5	44	35	41	Rc 1		
* Die innere Konstruktion von 280-6S und 280-8S unterscheidet sich teilweise von der obigen Zeichnung.									

Modell	Anwendung	Masse (g)	Abmessungen (mm)					
ivioueii	Anwendung	iviasse (y)	L	øD	H(WAF)	T		
280-2S	R 1/4	110	46	(27)	19	Rc 1/4		
280-3S	R 3/8	185	53	(33)	23	Rc 3/8		
280-4S	R 1/2	335	66,5	(39)	29	Rc 1/2		
280-6S	R 3/4	571	81	(48)	35	Rc 3/4		
280-8S	R 1	871	98	(55)	41	Rc 1		

Anwendungsbeispiel

350 Cupla

Für Hydraulikdrücke bis 34,5 MPa {352 kgf/cm²}

Ihre "luftleere Ventilabsperrung" reduziert die Luftbeimischung erheblich! Ideal für Hydraulikleitungen mit größeren Druckschwankungen.

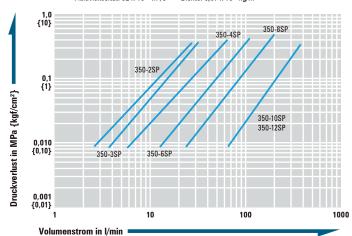
- Der Hülsenstoppermechanismus kann nach dem Anschließen durch Drehen der Hülse aktiviert werden.
- Sowohl die Buchse als auch der Stecker sind mit automatischen Absperrventilen ausgestattet, um das Austreten von Fluids beim Trennen zu verhindern. Einfach in der Handhabung.

Technische Daten								
Gehäusewerkstoff		Special steel (Nickel plated)						
Größe (Gewinde)	1/4	1/4", 3/8", 1/2", 3/4", 1", 1 1/4", 1 1/2"						
Druckeinheit	MPa	kgf/cm²	Bar	PSI				
Betriebsdruck	34,5	352	345	5000				
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke				
Betriebstemperaturbereich	Fluoro rubber	FKM (X-100)	20 °C bis +180 °C	Standardmaterial				

Max. Anzugsdrehmoment Nm {kgf⋅cm}									
Größe (Gewinde)	1/4"	3/8"	1/2"	3/4"	1"	1 1/4"	1 1/2"		
Drehmoment	28 {286}	40 {408}	80 {816}	150 {1530}	250 {2550}	500 {5100}	500 {5100}		

Strömungsrichtung

Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

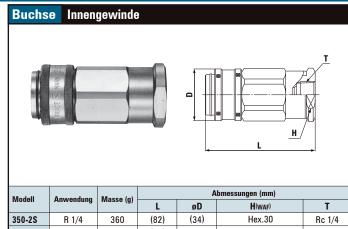

Buchsen und Stecker verschiedener Größen können nicht miteinander verbunden werden. Es können jedoch 350-2SP mit 350-3SP oder 350-10SP mit 350-12SP verbunden werden.

Min. Querschnittsfläche (mm²)								
Modell 350-2SP 350-3SP 350-4SP 350-6SP 350-8SP 350-10SP 350-								
Min. Querschnittsfläche	34,2	34,2	73,0	149,6	227,0	452,4	452,4	

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

Beimischun	Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren. (ml)								
Modell	350-2SP 350-3SP 350-4SP 350-6SP 350-8SP 350-10SP 350-								
Luftvolumen	0,1	0,1	0,2	0,3	0,5	0,9	0,9		

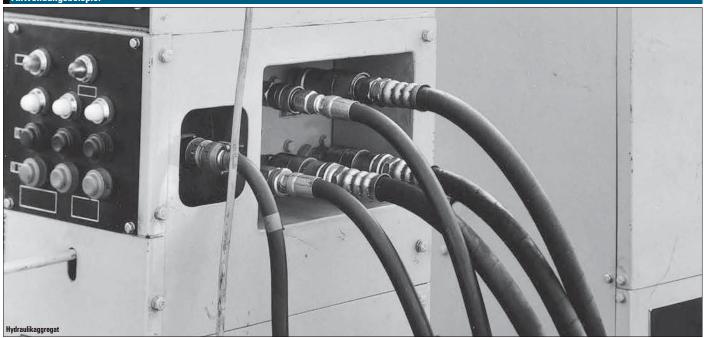
• Fluid: Hydraulic oil • Fluid: Hydraulic oil • Temperatur: 40 °C ±5 °C • Fluidviskosität: 32 x 10 ° m²/s • Dichte: 0,87 x 10 ° kg/m³


↑ Vorsichtsmaßnahmen f ür den Gebrauch

Sie dürfen Cuplas nicht anschließen/trennen, wenn Druck ausgeübt wird oder verbleibt.

Stecker Innengewinde

			Abmessungen (mm)					
Modell	Anwendung	Masse (g)	L	C	øD	H(WAF)	Т	
350-2P	R 1/4	170	(72)	36	29	Hex.27	Rc 1/4	
350-3P	R 3/8	167	(72)	36	29	Hex.27	Rc 3/8	
350-4P	R 1/2	245	85	40,5	30	Hex.27	Rc 1/2	
350-6P	R 3/4	415	87	44,5	40	Hex.36	Rc 3/4	
350-8P	R 1	950	111	57	55	Hex.50	Rc 1	
350-10P	R 1 1/4	2.700	(144)	75	78	Hex.70	Rc 1 1/4	
350-12P	R 1 1/2	2.600	(144)	75	78	Hex.70	Rc 1 1/2	

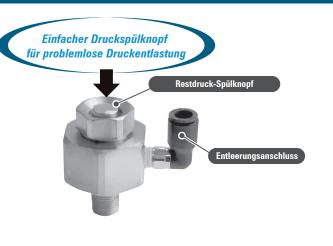

G-Gewinde ist auf Anfrage erhältlich.

Modell	Modell Anwendung Mass			Abmessungen (mm)						
IVIOUEII	Milwelluully	iviasse (y)	L	øD	H(WAF)	T				
350-2S	R 1/4	360	(82)	(34)	Hex.30	Rc 1/4				
350-3S	R 3/8	353	(82)	(34)	Hex.30	Rc 3/8				
350-4S	R 1/2	545	(93,5)	(41)	Hex.36	Rc 1/2				
350-6S	R 3/4	976	(105,5)	(49)	46 x ø52	Rc 3/4				
350-8S	R 1	1.740	(129)	(63)	55 × ø62	Rc 1				
350-10S	R 1 1/4	5.600	(180)	89	Hex.80 × ø90	Rc 1 1/4				
350-12S	R 1 1/2	5.500	(180)	89	Hex.80 × ø90	Rc 1 1/2				
	•	•								

G-Gewinde ist auf Anfrage erhältlich.

Anwendungsbeispiel

Optionales Zubehör


Spüladapter

Metall-Spüladapter für Hydraulikleitungen (Semi-Standard)

• Kann an Hydraulikleitungen angeschlossen werden, um den Restdruck effektiv abzulassen.

Modell	PAD-2 (Teile-Nr. CB19855)						
Anwendbares Fluid	Hydraulic oil						
Material		Steel (Nickel plated)					
Anwendung	Rc 1/4						
Druckeinheit	MPa kgf/cm² Bar PSI						
Betriebsdruck	35,0	357	350	5080			
Prüfdruck	52,5	536	525	7610			
Dichtungsmaterial	Nitrile rubber (NBR)						
Betriebstemperaturbereich		-5 °C bis	+80 °C				

Semi-Standard-Artikel: Da diese Artikel nicht immer auf Lager sind, ist die Lieferzeit unverbindlich.

Flat Face Cupla F35

Für Hydraulikdrücke bis 35,0 MPa {357 kgf/cm²} mit flacher Auflagefläche

Das flache Design der Kontaktfläche reduziert das Verschütten beim Trennen.

- Die flache Kontaktfläche erleichtert die Reinigung von Staub und Fremdkörpern, die auf der Oberfläche der Kupplung haften, sodass sie nicht in das Innere der Kupplung eindringen können und somit eine Fehlbedienung der Verbindung oder Trennung verursachen.
- Die flache Kontaktfläche minimiert die Luftbeimischung während des Anschlusses, um mögliche Fehlfunktionen der Geräte durch die Luftblasen in der Hydraulikleitung auf einem Minimum zu halten.
- Push-to-connect-Verfahren.
- Der Hülsenstoppermechanismus wird nach dem Anschließen durch Drehen der Hülse aktiviert. Er verhindert ein unbeabsichtigtes Trennen, auch wenn Vibrationen oder Stöße auf den Cupla einwirken.
- Die spezielle Konstruktion reduziert den Druckverlust erheblich und eignet sich besonders für hydraulische Anwendungen, bei denen ein großer Durchfluss erforderlich ist. Sowohl Buchse als auch Stecker haben integrierte automatische Absperrventile, die ein Austreten des Fluids beim Trennen verhindern.

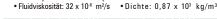
Technische Daten								
Gehäusewerkstoff		Special steel (Nickel plated)						
Größe (Gewinde)		1/4", 3/8", 1/2", 3/4", 1"						
Druckeinheit	MPa	kgf/cm²	Bar	PSI				
Betriebsdruck	35,0	357	350	5080				
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke				
Betriebstemperaturbereich	Fluoro rubber	FKM (X-100)	20 ° C bis +180 °C	Standardmaterial				
·	Nitrile rubber	NBR (SG)	20 °C bis +80 °C	Sonderanfertigung				

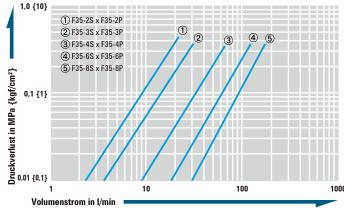
Max. Anzugsdrehmoment Nm {kgf·cn							
Größe (Gewinde)	(Gewinde) 1/4" 3/8" 1/2"						
Drehmoment	28 {286}	40 {408}	80 {816}	150 {1530}	250 {2550}		

Strömungsrichtung Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Verschiedene Größen können nicht miteinander verbunden werden.

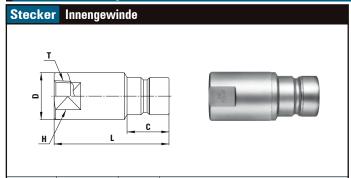
Min. Querschnittsfläche (mm²)								
Modell F35-2SP F35-3SP F35-4SP F35-6SP								
Min. Querschnittsfläche	21,2	32,2	78,5	149,6	227,0			


Eignung für Vakuum


Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

Beimischung von Luft b	Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren. (ml)							
Modell	F35-2SP F35-3SP F35-4SP F35-6SP							
Luftvolumen	0,1	0,1	0,2	0,3	0,4			

Volumenstrom - Druckverlustcharakteristik


[Testbedingungen] • Fluid: Hydraulic oil Temperatur: 30 °C ± 5 °C

↑ Vorsichtsmaßnahmen für den Gebrauch

Sie dürfen Cuplas nicht anschließen/trennen, wenn Druck ausgeübt wird oder verbleibt.

Modell		B4 (-)		Abn	nessungen (mm)	
Mindell Allwe	Anwendung	Masse (g)	L	C	øD	H(WAF)	T
F35-2P	R 1/4	106	58	18,8	21,5	19	Rc 1/4
F35-3P	R 3/8	190	67,5	24	27	24	Rc 3/8
F35-4P	R 1/2	290	78	28,5	31,7	27	Rc 1/2
F35-6P	R 3/4	460	84,5	31	40	36	Rc 3/4
F35-8P	R 1	1000	108	39	50	46	Rc 1

	odell Anwendung Masse		Abmessungen (mm)				
Modell	Anwendung	Masse (g)	L	øD	H(WAF)	T	
F35-2S	R 1/4	182	(57,5)	(28)	26 x ø28,5	Rc 1/4	
F35-3S	R 3/8	320	(70)	(34)	30	Rc 3/8	
F35-4S	R 1/2	490	(78)	(41)	36	Rc 1/2	
F35-6S	R 3/4	815	(85)	(49)	46 × ø50	Rc 3/4	
F35-8S	R 1	1520	(104)	(63)	55	Rc 1	

Flat Face Cupla FF

Für einen Hydraulikdruck bis 35,0 MPa {357 kgf/cm²} mit flacher Auflagefläche

Im Vergleich zu den herkömmlichen 35 MPa-Cuplas von Nitto Kohki wird die **Durchflussmenge auf das** 1,5- bis 2-Fache erhöht.

- * Die Zuwachsrate der einzelnen Durchflussmengen ist abhängig von der Cupla-Größe.
- Die "luftleere Ventilabsperrung" minimiert das Verschüttungsvolumen beim Abkuppeln und das Beimischungsvolumen der Luft beim Anschluss.
- Bestens geeignet für Hydraulikleitungen mit drastischen Hochdruckpulsationen wie z. B. in Druckgussmaschinen.
- Die Konstruktion des Hülsenstoppers, die ein versehentliches Lösen bei Vibrationen oder Stößen verhindert, erhöht die Betriebsfähigkeit und die Sicherheit.

• Die Größen sind Rc 3/8, Rc 1/2, Rc 3/4 und Rc 1.

Die versetzte, konkave, ebene Fläche ermöglicht eine schnelle und problemlose Verbindung

Einzigartiges flaches Design

Konkav gewölbter Versatz an den ebenen Flächen der Buchsenführungen für schnelles und gleichmäßiges Zentrieren und Anschließen, aber dennoch leichtes Abwischen von Schmutz und Staub.

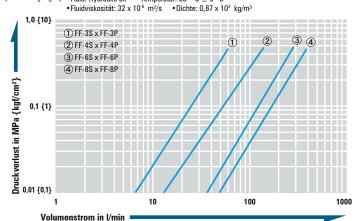
Technische Daten Gehäusewerkstoff Special steel (Nickel plated) Größe (Gewinde) 3/8", 1/2", 3/4", 1" Druckeinheit MP: kgf/cm² Betriebsdruck 35.0 357 350 5080 **Dichtungsmaterial** Betriebstemperaturbereich Nitrile rubber NBR 20 °C bis +80 Standardmaterial

Max. Anzugsdrehmoment N m {kgf·cm}					
Größe (Gewinde)	3/8"	1/2"	3/4"	1"	
Drehmoment	40 {408}	80 {816}	150 {1530}	250 {2550}	

Strömungsrichtung

Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Min. Querschnittsfläche (mm²)					
Modell	FF-3S x FF-3P	FF-4S x FF-4P	FF-6S x FF-6P	FF-8S x FF-8P	
Min. Querschnittsfläche	51	106	215	332	

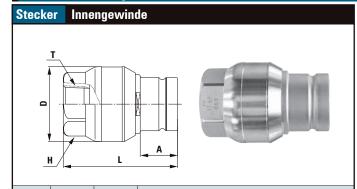

Eignung für Vakuum

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

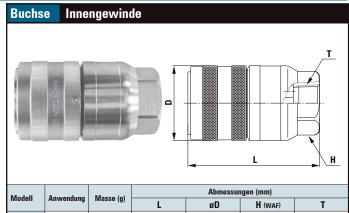
Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren. (ml)						
Modell FF-3S x FF-3P FF-4S x FF-4P FF-6S x FF-6P FF-8S x FF						
Volumen der Luftbeimischung	0,018	0,029	0,033	0,080		

Verschüttetes Volumen pro Trennung Kann je nach Einsatzbedingungen variieren. (ml)					
Modell FF-3S x FF-3P FF-4S x FF-4P FF-6S x FF-6P FF-8S					
Verschüttungsvolumen	0,009	0,023	0,031	0,110	

• Fluid: Hydraulic oil •Temperatur: 30 °C ± 5 °C



∕↑ Vorsichtsmaßnahmen für den Gebrauch


Sie dürfen Cuplas nicht anschließen/trennen, wenn Druck ausgeübt wird oder verbleibt

Sechskantmutter für einfache Montage

Modelle und Abmessungen

Modell	Modell Anwendung Masse (g)			Abmessungen (mm)					
Allwellully	iviasse (y)	L	øD	Α	H (WAF)	T			
FF-3P	R 3/8	252	(66)	34	20,5	Hex.29	Rc 3/8		
FF-4P	R 1/2	409	(74)	42	22,8	Hex.32	Rc 1/2		
FF-6P	R 3/4	709	(82,5)	54	27	Hex.41	Rc 3/4		
FF-8P	R 1	1314	(96,5)	66	29,5	Hex.54	Rc 1		

Modell	Anwendung	Masse (g)	Abiliessuligeli (IIIIII)			
Milweildung	Anwendung	iviasse (y)	L	øD	H (WAF)	T
FF-3S	R 3/8	345	(71)	(35,5)	Hex.29	Rc 3/8
FF-4S	R 1/2	608	(84)	(44)	Hex.32	Rc 1/2
FF-6S	R 3/4	1053	(95)	(54)	Hex.41	Rc 3/4
FF-8S	R 1	1865	(109,5)	(66)	Hex.54	Rc 1

Anwendungen

- Hydraulikleitungen für Druckgussmaschinen
- Gießmaschinen
- Elektroöfen
- Formpressen
- Schmiedepressen
- Pressen für pulverförmige Legierungen
- Extrusionsformmaschinen
- · Werkzeugmaschinen
- Hochöfen für die Eisenherstellung
- Stranggießanlagen
- Walzwerke
- Rohrschmiedemaschinen
- Ofenöffnungs-/Verschließmaschinen
- Glasformmaschinen usw.

450B Cupla

Für Hydraulikdruck bis 44,1 MPa {450 kgf/cm²}

Metall-Touch-Ventilsystem mit überlegener Haltbarkeit! Hülsenstopper-Mechanismus sorgt für eine sichere Verbindung.

- Cupla für höheren Betriebsdruck bis zu 44,1 MPa {450 kgf/cm²}.
- Der Hülsenstoppermechanismus kann nach dem Anschließen durch Drehen der Hülse aktiviert werden.
- Sowohl die Buchse als auch der Stecker verfügen über automatische Absperrventile mit Metallberührung, die ein Austreten des Fluids beim Trennen verhindern.

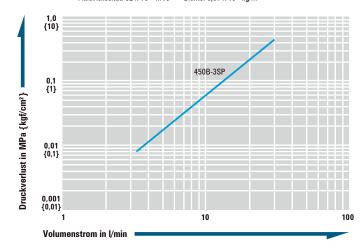
Technische Daten						
Gehäusewerkstoff		Special steel (Nickel plated)				
Größe (Gewinde)		3/8"				
Druckeinheit	MPa kgf/cm² Bar PSI					
Betriebsdruck	44,1	450	441	6400		
B	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke		
Dichtungsmaterial Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	20 °C bis +80 °C	Standardmaterial		
Dott 1003tomporatar borotom	Fluoro rubber	FKM (X-100)	20 °C bis +180 °C	Sonderanfertigung		
Unabhängige Leckrate an Buchse oder Stecker	0,1 ml/min bei 0,3 MPa {3 kgf/cm²}					

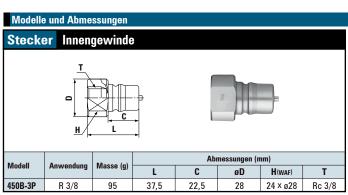
Max. Anzugsdrehmome	ent	Nm {kgf·cm}
Drehmoment	40 {408}	

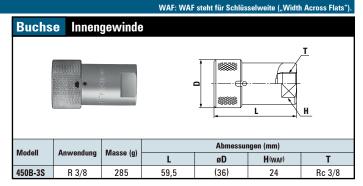
Strömungsrichtung
Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Austauschbarkeit

Verschiedene Größen sind nicht untereinander austauschbar.


Min. Querschnittsfläch	e (mm²)
Min. Querschnittsfläche	37


Eignung für Vakuum		1,3 Pa {1 x 10 mmHg}
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit


Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren.		
Volumen der Luftbeimischung	1,43	

Volumenstrom - Druckverlustcharakteristik

[Testbedingungen] •Fluid: Hydraulic oil •Temperatur: 25 °C ± 5 °C •Fluirlviskosität: 32 x 10⁶ m²/s •Dichte: 0,87 x 10³ kg/m³

700R Cupla

Für Hydraulikdruck bis 68,6 MPa {700 kgf/cm²}

Hochdruck-Cupla für Betriebsdr ücke bis 68,6 MPa.

- Metall-Touch-Ventile verwenden keine Gummidichtung und gewährleisten somit eine hohe Lebensdauer.
- Sowohl die Buchse als auch der Stecker verfügen über automatische Absperrventile mit Metallberührung, die ein Austreten des Fluids beim Trennen verhindern.

Technische Daten				
Gehäusewerkstoff		Special steel (Nickel plated)		
Größe (Gewinde)		3/8"	, 1/2"	
Druckeinheit	MPa	kgf/cm²	Bar	PSI
Betriebsdruck	68,6	700	686	9950
Bill ()	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke
Dichtungsmaterial Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	Standardmaterial
	Fluoro rubber	FKM (X-100)	-20 °C bis +180 °C	Sonderanfertigung
Unabhängige Leckrate an Buchse oder Stecker			n bei 0,2 MPa {2 n bei 0,3 MPa {3	

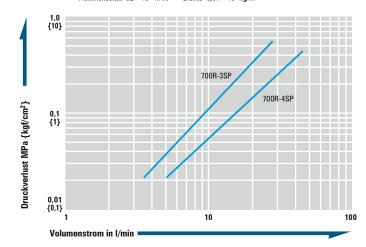
Nicht in einer Umgebung mit Impulsdruck verwenden

Max. Anzugsdrehmome	Nm {kgf∙cm}	
Größe (Gewinde)	3/8"	1/2"
Drehmoment	40 {408}	85 {867}

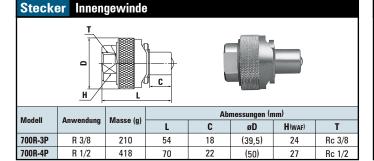
Strömungsrichtung

Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.

Austauschbarkeit


Verschiedene Größen sind nicht untereinander austauschbar.

Min. Querschnittsfläche	(mm²)	
Modell	700R-3SP	700R-4SP
Min. Querschnittsfläche	34	55


Eignung für Vakuum		1,3 Pa {1 × 10 ⁻² mmHg}
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit

Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren.			(ml)
Modell	700R-3SP 700R-4SP		
Volumen der Luftbeimischung	1,0	2,2	

[Testbedingungen] •Fluid: Hydraulic oil •Temperatur: 30 °C \pm 5 °C • Fluidviskosität: 32 x 10⁻⁶ m²/s

Modelle und Abmessungen

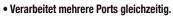
Buchse Innengewinde Masse (g) øD H(WAF) 700R-3S R 3/8 (73) (39,5)Rc 3/8 700R-4S R 1/2 562 (91) (50)27 Rc 1/2

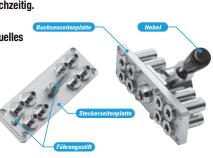
WAF: WAF steht für Schlüsselweite ("Width Across Flats").

Für Multi-Port-Verbindung (manuell)

Multi Cupla

MAM Type


System mit mehreren Luftanschlüssen


Verbindet gleichzeitig mehrere Ports sicher in einem Arbeitsgang! Verkürzt die Zykluszeit beim Austausch mehrerer Ports erheblich.

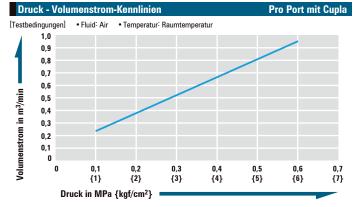
 Einfache Hebelbetätigung ermöglicht problemloses manuelles An- und Abkuppeln.

 Mit Verriegelung gegen unbeabsichtigtes Entkuppeln.

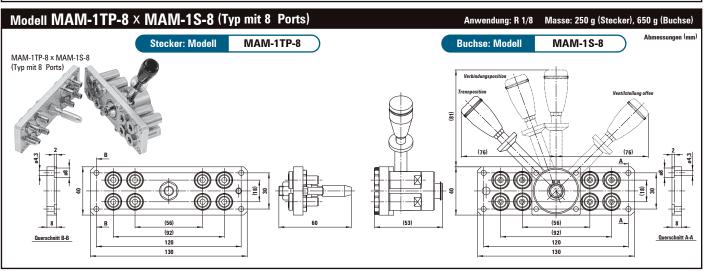
 Ventil nur auf der Buchsenseite.

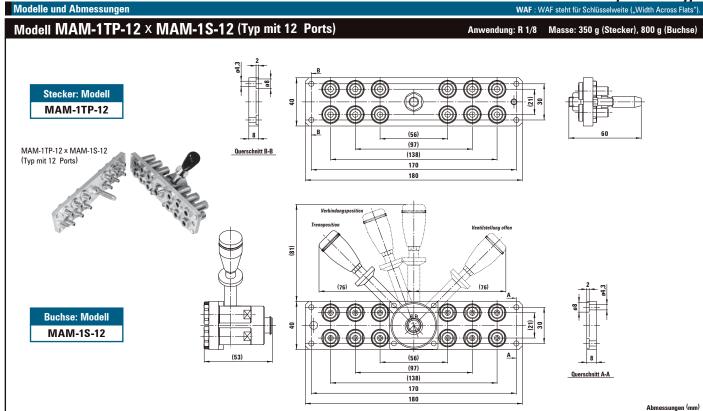
Technische Daten						
Gehäusewerkstoff	Cupla : Brass (Chrome plated) Platte : Aluminum alloy (4, 8, 12 Ports) / Platte : Steel (16 Ports) Verriegelungseinheit : Steel und andere					
Größe (Gewinde)	Rc 1/8					
Druckeinheit	MPa kgf/cm ² Bar PSI			PSI		
Betriebsdruck	0,7 7 7			102		
Dichtungsmaterial	Dichtungsmaterial Kennzeichnung Betriebstempera				bstemperaturbereich	
Betriebstemperaturbereich	Nitrile rubbe	r	NBR	(SG)	-20	°C bis +60 °C

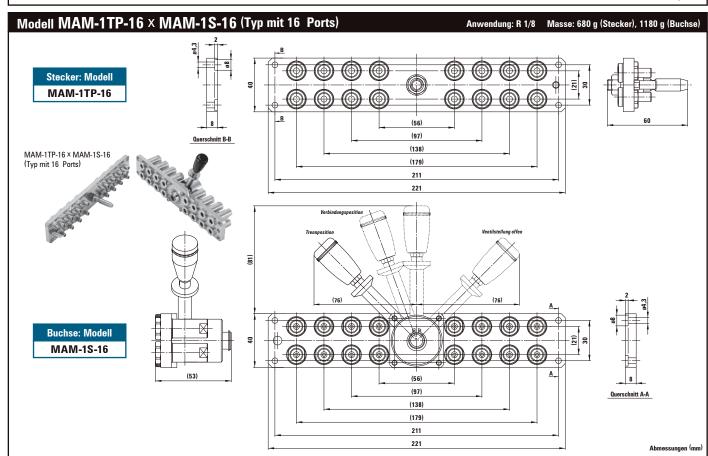
Max. Anzugsdrehmome	ent	Nm {kgf·cm}
Drehmoment	5 {51}	

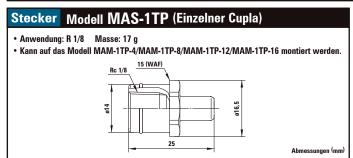

Austauschbarkeit

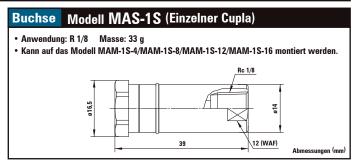
Es ist keine Verbindung zwischen Platten mit unterschiedlicher Anzahl von Anschlüssen möglich.


Min. Querschnittsfläch	e (mm²)
Pro Port	15,9


Eignung für Vakuum


Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

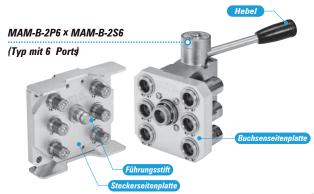



Modell MAM-1TP-4 x MAM-1S-4 (Typ mit 4 Ports) Anwendung: R 1/8 Masse: 150 g (Stecker), 500 g (Buchse) Stecker: Modell MAM-1TP-4 Buchse: Modell MAM-1S-4 (Typ mit 4 Ports) Wassinstellary after Vestitations gates Ammensungen (mm) MAM-1TP-4 x MAM-1S-4 (Typ mit 4 Ports) Wassinstellary after Vestitations gates Vestitations gates Ammensungen (mm) Ammensungen (mm) MAM-1TP-4 x MAM-1S-4 (Typ mit 4 Ports) Wassinstellary after Vestitations gates Vestitations gates Vestitations gates Ammensungen (mm) Wassinstellary after Vestitations gates Vestitations gates Vestitations gates Ammensungen (mm) Wassinstellary after Vestitations gates Vestitations gates Vestitations gates Ammensungen (mm)

Für Multi-Port-Verbindung (manuell)

Multi Cupla MAM-B Type

System mit mehreren Ports

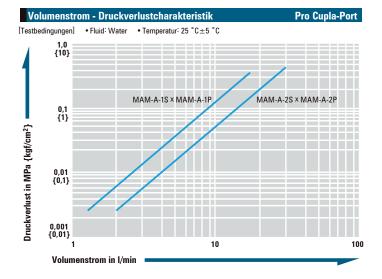


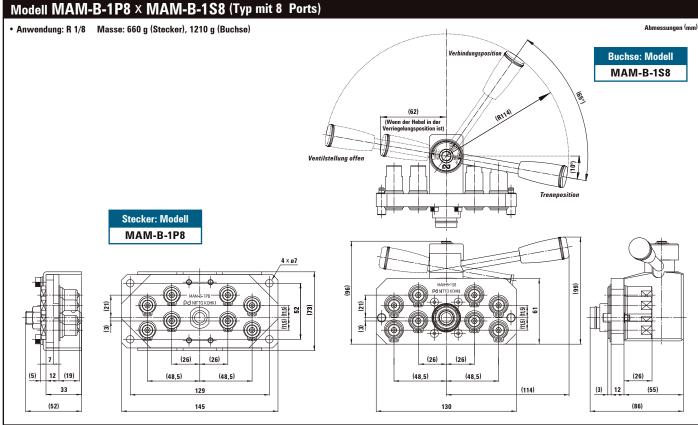
Verbindet gleichzeitig mehrere Ports sicher in einem Arbeitsgang. Reduziert die Umrüstzeit beim Austausch mehrerer Ports erheblich.

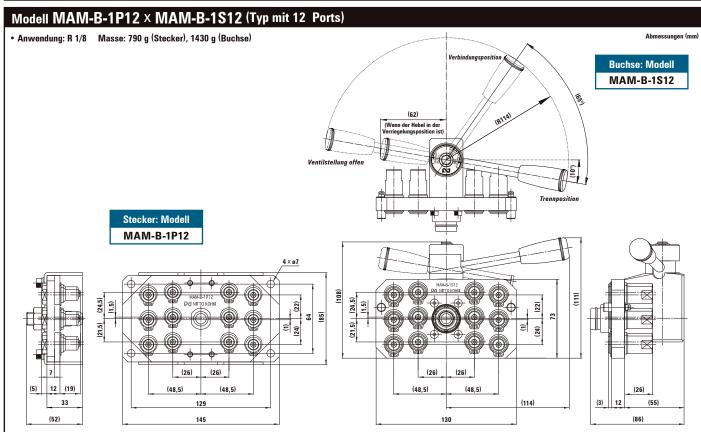
- · Verarbeitet mehrere Ports gleichzeitig.
- Die einfache manuelle Hebelbetätigung vervollständigt das einfache An- und Abkuppeln.
- Die zweistufige Hebelbetätigung verhindert ein unbeabsichtigtes Herunterfallen des Cuplas durch plötzliches Lösen.
- Mit Verriegelung gegen unbeabsichtigtes Entkuppeln.
- Großer Durchfluss wie beim SP Cupla Type A.
- Für jede Größe stehen zwei Arten von Platten zur Verfügung.
- Automatische Absperrventile in Buchse und Stecker verhindern das Austreten des Fluids beim Trennen.
- Die selbstausrichtende Ventilkonstruktion sorgt für eine sichere Abdichtung der einzelnen Buchsen bzw. Stecker im abgekuppelten Zustand.

Technisch	e Daten				
Modell	Stecker	MAM-B-1P8	MAM-B-1P12	MAM-B-2P6	MAM-B-2P8
Modell	Buchse	MAM-B-1S8	MAM-B-1S12	MAM-B-2S6	MAM-B-2S8
Anzahl der Por	ts	8	12	6	8
Größe (Gewind	le)	1/	8"	1/	′4"
Gehäusewerks	toff	Cupla: Brass (Nickel plated) Platte: Aluminum alloy Verriegelungseinheit: Steel (Nickel plated)			,
Druckeinheit		MPa	kgf/cm ²	Bar	PSI
Betriebsdruck		1,0	10	10	145
Umgebungsten	nperaturbereich	0 °C to +60 °C			
Dichtungsmate	rial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke
Betriebstempe	raturbereich	Fluoro rubber	FKM (X-100)	-20 °C bis +180 °C	Standardmaterial

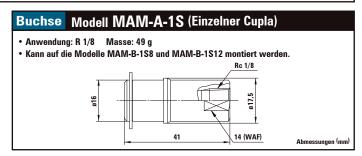
Max. Anzugsdrehmoment		Nm {kgf·cm}
Größe (Gewinde)	1/8"	1/4"
Drehmoment	5 {51}	9 {92}

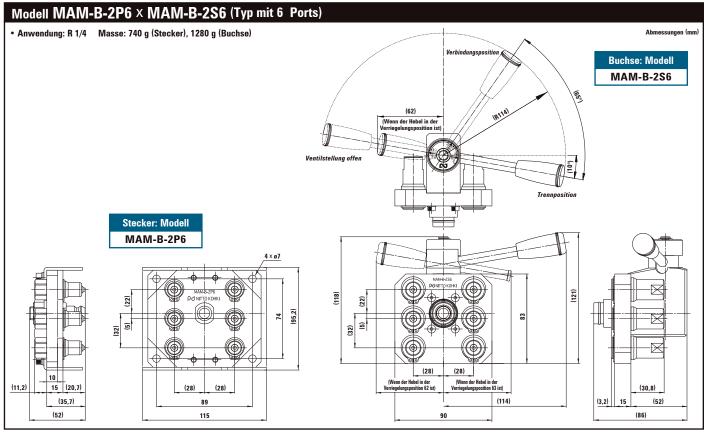

Es ist keine Verbindung zwischen Platten mit unterschiedlicher Anzahl von Anschlüssen möglich.

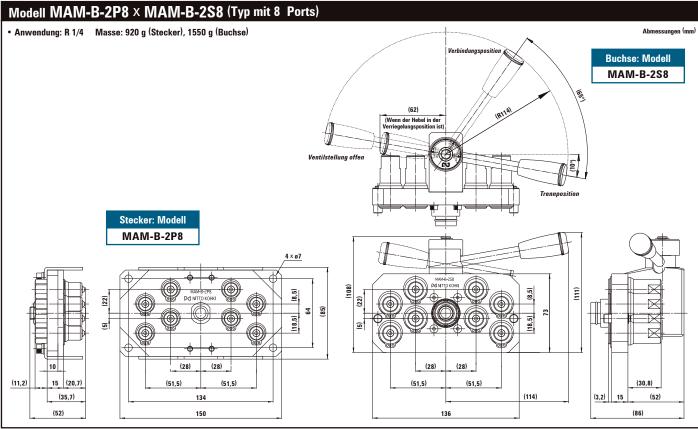

Min. Querschnittsfläche pro Port		
Modell	1SP-Typ	2SP-Typ
Min. Querschnittsfläche	14	26

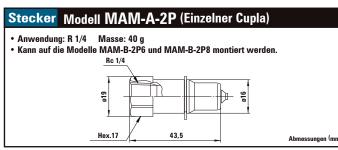

Eignung für Vakuum	1,3 x 10 ⁻¹ Pa {1 x 10 ⁻³ mmHg}		
nur Buchse	nur Stecker	Bei Anschluss	
_	_	betriebsbereit	

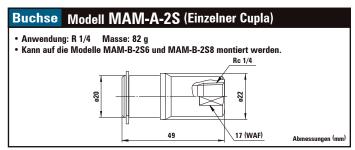
Beimischung von Luft bei	ei Anschluss pro Port Kann je nach Einsatzbedingungen variieren. (n			
Modell	1SP-Typ	2SP-Typ		
Luftvolumen	0,6	1,1		

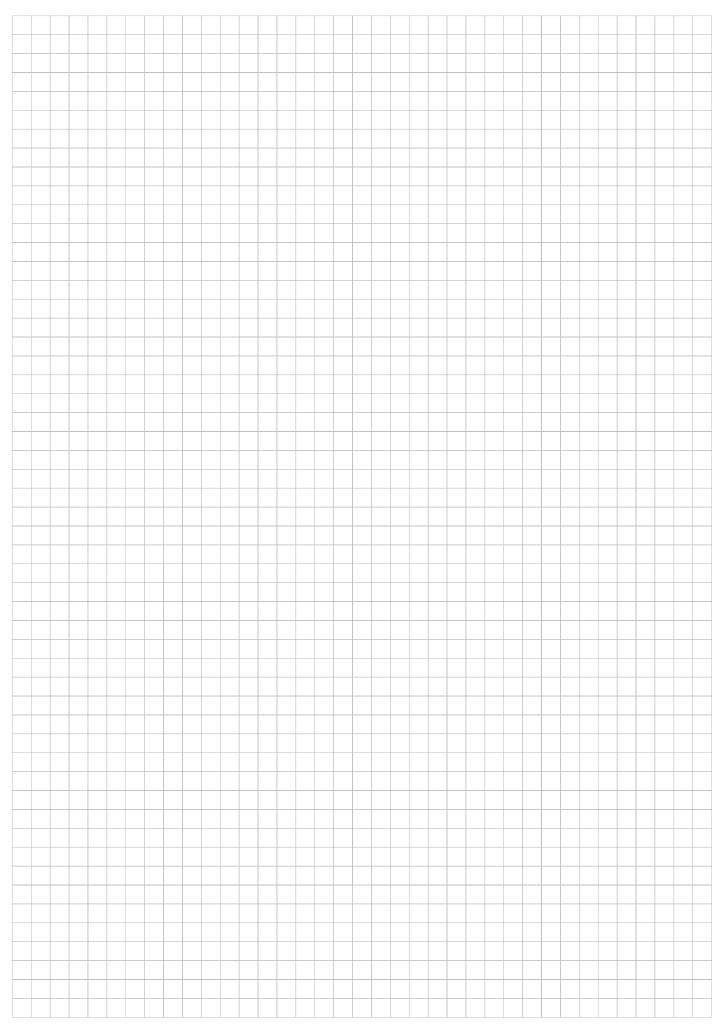

Verschüttungsvolumen be	bei Trennung pro Port Kann je nach Einsatzbedingungen variieren. (ml			
Modell	1SP-Typ	2SP-Typ		
Verschüttungsvolumen	0,4	0,8		








Stecker Modell MAM-A-1P (Einzelner Cupla) • Anwendung: R 1/8 Masse: 25 g Kann auf die Modelle MAM-B-1P8 und MAM-B-1P12 montiert werden. Rc 1/8 14 (WAF)



Auf Anfrage sind Sonderanfertigungen von Multi Cuplas erhältlich, wie z. B. eine Kombination verschiedener Größen auf der Flanschplatte.

Für Multi-Port-Verbindung (manuell)

Multi Cupla MAM-A Type

System mit mehreren Ports



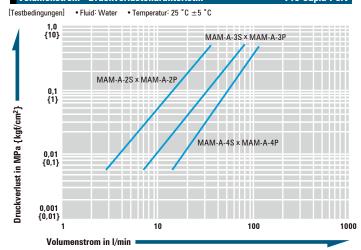
- Verarbeitet mehrere Ports gleichzeitig.
- Die einfache manuelle Hebelbetätigung vervollständigt das einfache An- und
- Die zweistufige Hebelbetätigung verhindert ein unbeabsichtigtes Herunterfallen des Cuplas durch plötzliches Lösen.
- Mit Verriegelung gegen unbeabsichtigtes Entkuppeln.
- Großer Durchfluss wie beim SP Cupla Type A.
- Für jede Größe stehen zwei Arten von Platten zur Verfügung.
- Automatische Absperrventile in Buchse und Stecker verhindern das Austreten des Fluids beim Trennen.
- Die selbstausrichtende Ventilkonstruktion sorgt für eine sichere Abdichtung der einzelnen Buchsen bzw. Stecker im abgekuppelten Zustand.

Name
Modell Buchse MAM-A-2S6 MAM-A-2S12 MAM-A-3S6 MAM-A-3S12 MAM-A-4S4 MAM-A-4S4 MAM-A-4S4 Anzahl der Ports 6 12 6 12 4 8 Größe (Gewinde) 1/4" 3/8" 1/2" Cupla: Brass (Nickel plated) Platte: Aluminum alloy
Buchse MAM-A-2S6 MAM-A-2S12 MAM-A-3S6 MAM-A-3S12 MAM-A-4S4 MAM-A-4S4 MAM-A-4S4 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-3S6 MAM-A-3S6 MAM-A-3S6 MAM-A-3S6 MAM-A-3S6 MAM-A-3S6 MAM-A-3S6 MAM-A-3S6 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-4S6 MAM-A-3S6 MAM-A-4S6 MAM-A
Größe (Gewinde) 1/4" 3/8" 1/2" Cupla: Brass (Nickel plated) Platte: Aluminum alloy
Cupla: Brass (Nickel plated) Platte: Aluminum alloy
Druckeinheit MPa kgf/cm² Bar PSI
Betriebsdruck 1,0 10 10 145
Umgebungstemperaturbereich 0 °C bis +60 °C
Dichtungsmaterial Dichtungsmaterial Kennzeichnung Betriebstemperaturbereich Vermerke
Betriebstemperaturbereich Fluoro rubber FKM (X-100) -20 °C bis +180 °C Standardmateria

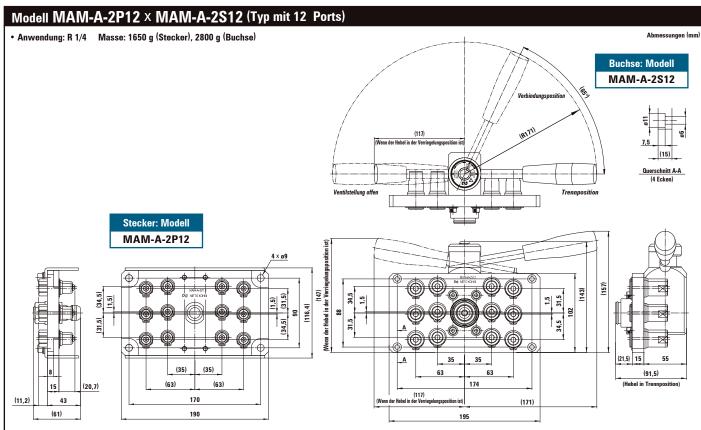
Max. Anzugsdrehmoment Nm {kgf · c			Nm {kgf·cm}
Größe (Gewinde)	1/4"	3/8"	1/2"
Drehmoment	9 {92}	12 {122}	30 {306}

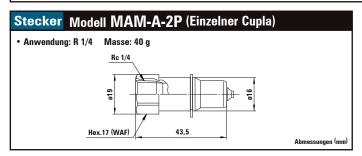
Austauschbarkeit

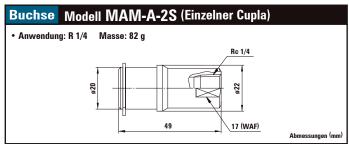
Es ist keine Verbindung zwischen Platten mit unterschiedlicher Anzahl von Anschlüssen möglich.

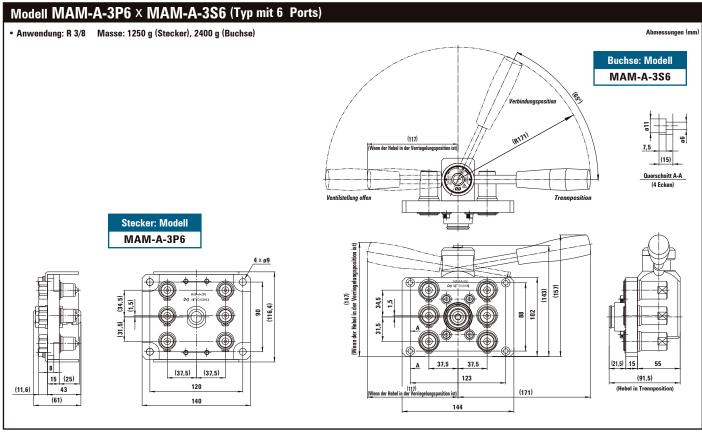

Min. Querschnittsfläche pro Port (i			(mm²)
Modell	2SP-Typ	3SP-Typ	4SP-Typ
Min. Querschnittsfläche	26	51	73

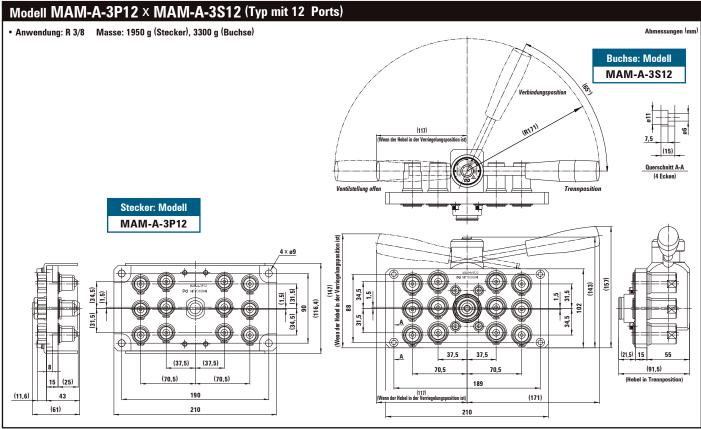
Eignung für Vakuum	1,3 x 10 ⁻¹ Pa {1 x 10 ⁻³ mmHg}		
nur Buchse	nur Stecker	Bei Anschluss	
_	_	betriebsbereit	

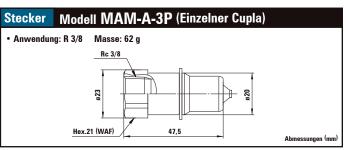

Beimischung von Luft bei	Beimischung von Luft bei Anschluss pro Port Kann je nach Einsatzbedingungen variieren. (ml			
Modell	2SP-Typ	3SP-Typ	4SP-Typ	
Luftvolumen	1,1	2,7	3,9	

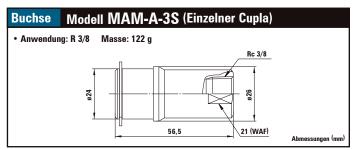

Verschüttungsvolumen bei Trennung pro Port Kann je nach Einsatzbedingungen variieren. (m.			
Modell	2SP-Typ	3SP-Typ	4SP-Typ
Verschüttungsvolumen	0,8	2,1	3,4


Pro Cupla-Port Volumenstrom - Druckverlustcharakteristik

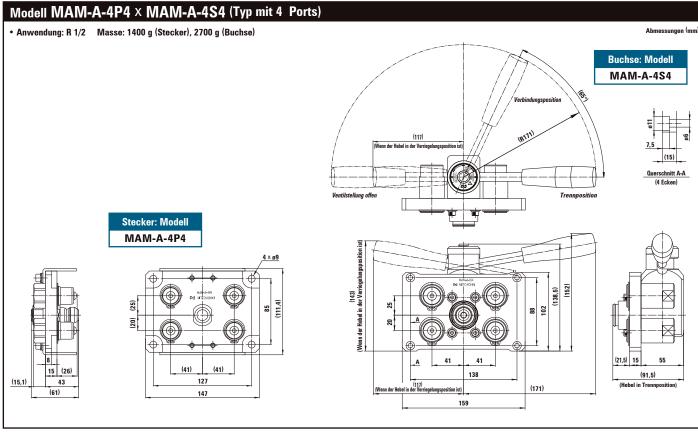

Modell MAM-A-2P6 × MAM-A-2S6 (Typ mit 6 Ports) • Anwendung: R 1/4 Masse: 1100 g (Stecker), 2150 g (Buchse) Abmessungen (mm Buchse: Modell MAM-A-2S6 (117) (15) Stecker: Modell MAM-A-2P6 (143) 88 102 (91,5) 112 (171) 132 139

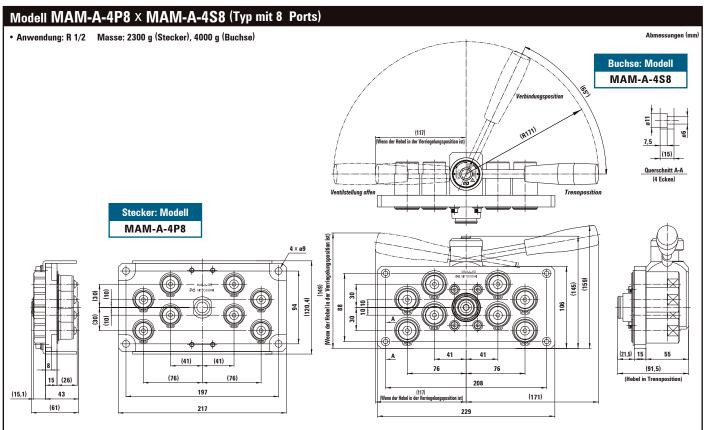


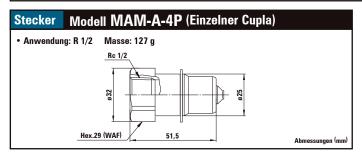


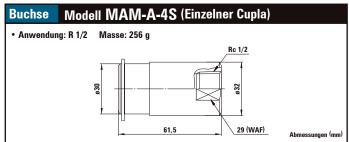


Auf Anfrage sind Sonderanfertigungen von Multi Cuplas erhältlich, wie z. B. eine Kombination verschiedener Größen auf der Flanschplatte.









Auf Anfrage sind Sonderanfertigungen von Multi Cuplas erhältlich, wie z. B. eine Kombination verschiedener Größen auf der Flanschplatte.

Auf Anfrage sind Sonderanfertigungen von Multi Cuplas erhältlich, wie z. B. eine Kombination verschiedener Größen auf der Flanschplatte.

Für Multi-Port-Verbindung (automatisch) **Multi Cupla MAS Type / MAT Type** 7,0 MPa {71 kgf/cm²} Universalausführung

Verbindet mehrere Leitungen gleichzeitig in einem Arbeitsgang, für verschiedene Fluids und Größen.

- Ideal für automatisierte hydraulische oder pneumatische, zylindergesteuerte Systeme, die mehrere Leitungen gleichzeitig verbinden und trennen müssen.
- Automatische Absperrventile in Buchsen und Steckern sorgen dafür, dass beim Abkuppeln kein Fluid austritt.
- Es stehen andere Gehäusewerkstoffe als Edelstahl zur Verfügung, die mit oder ohne Ventile bestellt werden können (Sonderanfertigungen).
- Sprengring und Einschraubgewinde zur Montage auf der Grundplatte sind genormt.
- Der MAS-Typ kann axiale Exzentrizität zwischen Buchse und Stecker aufnehmen.
- Die Toleranz der Exzentrizität liegt im Radiusbereich von 0,3 mm.
- * Eine Verbindung oder Trennung von Cuplas mit Fluid unter Staudruck ist nicht möalich.

Technische Daten									
Gehäusewerkstoff	Stainless steel (Nickel plated)								
Druckeinheit	MPa	MPa kgf/cm² Bar				PSI			
Betriebsdruck	7,0		71	70		1020			
Dichtungsmaterial	Dichtungsmaterial		Kennzeichnung		Betriebstemperaturbereich				
Betriebstemperaturbereich	Fluoro rubber		FKM (X-100)		-20 °C bis +180 °C				

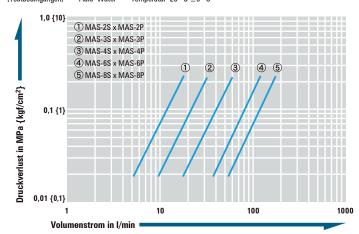
Max. Anzugsdrehmoment Nm {kgf·cm									
Größe (Gewinde)	1/4"	3/8"	1/2"	3/4"	1"				
Drehmoment (MAS-Typ)	14 {143}	22 {224}	60 {612}	90 {918}	120 {1224}				
Größe (Gewinde)	M20	M24	M30	M39	M45				
Drehmoment (MAT-Typ)	50 {510}	50 {510}	50 {510}	70 {714}	80 {816}				

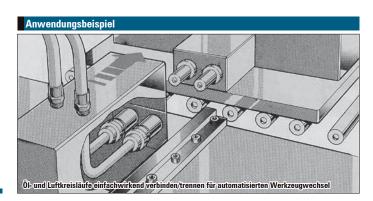
Austauschbarkeit

- MAS- und MAT- oder MAS- und MAS-Typen gleicher Größe sind anzuschließen.
- Eine Verbindung zwischen den gleichen MAT-Typen ist praktisch nicht möglich, da die Exzentrizität nicht berücksichtigt wird.

Min. Querschnittsfläche (mm²)								
Modell	2SP	3SP	4SP	6SP	8SP			
Min. Querschnittsfläche	23	41	76	145	224			

Eignung für Vakuum $1,3 \times 10^{-1}$ Pa $\{1 \times 10^{-3} \text{ mm}\}$						
nur Buchse	nur Stecker	Bei Anschluss				
-	_	betriebsbereit				

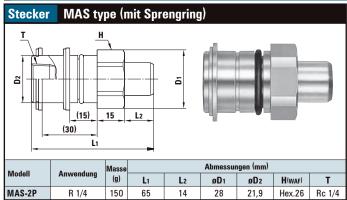

Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren. (ml)									
Modell	dell 2SP 3SP 4SP				8SP				
Luftvolumen	1,1	2,4	3,2	10,5	17,0				

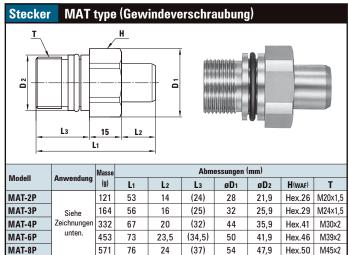

Die Last, die für die Aufrechterhaltung der Verbindung erforderlich ist, wenn die Leitung unter Druck steht.										
Modell	2SP	3SP	4SP	6SP	8SP					
Maximal zulässige Belastung N {kgf}	3200 {327}	5200 {531}	9200 {939}	13900 {1419}	20200 {2062}					
Erforderliche Mindestlast für die Aufrechterhaltung der Verbindung N {kgf} *	P×185+45 {p×1,85+4,5}			Px850+95 {px8,5+9,5}	Px1225+120 {px12,25+12}					

^{*} Ordnen Sie den Istwert des Drucks [P (MPa), p (kgf/cm²)] der obigen Formel zu, um die Belastung zu berechnen. Halten Sie die Verbindung mit der Mindestlast oder einer höheren Last, die aber die maximal zulässige Last nicht überschreiten darf, aufrecht.

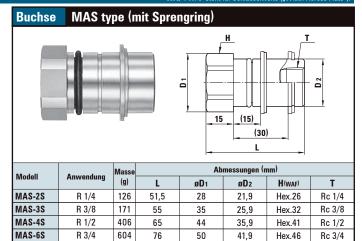
Volumenstrom - Druckverlustcharakteristik

[Testbedingungen]




WAF: WAF steht für Schlüsselweite ("Width Across Flats")

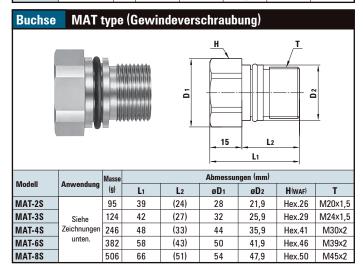
Hex.54

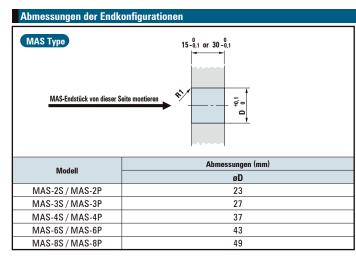

Rc 1

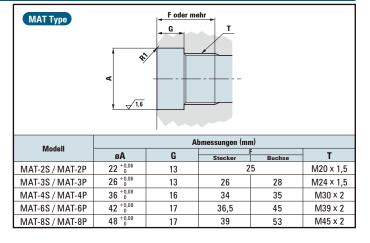
Modell	A	Masse		Abmessungen (mm)						
iviodeli	Anwendung	(g)	L ₁	L2	øD1	øD2	H(WAF)	Т		
MAS-2P	R 1/4	150	65	14	28	21,9	Hex.26	Rc 1/4		
MAS-3P	R 3/8	203	67	16	35	25,9	Hex.32	Rc 3/8		
MAS-4P	R 1/2	412	73	20	44	35,9	Hex.41	Rc 1/2		
MAS-6P	R 3/4	579	76,5	23,5	50	41,9	Hex.46	Rc 3/4		
MAS-8P	R 1	720	78	24	58	47,9	Hex.54	Rc 1		

Der MAT type muss mit dem MAS type gekoppelt werden.

58


47,9


MAS-8S


R 1

825

87

Für Multi-Port-Verbindung (automatisch)

Multi Cupla

MALC-01 Type für Niederdruckanwendungen

Einwegabsperrungsausführung für Niederdruckanwendungen

Eine Einzelbenutzung der Buchse ist möglich. Geeignet für die Betätigung von Auswerferstiften zum Öffnen/Schließen von Schirmangüssen im Spritzguss.

- Eine Einzelbenutzung der Buchse ist möglich.
- Wie bei den Multi Cupla MALC-SP type und MALC-HSP type ist der Abstand zwischen Buchsenplatte und Steckerplatte im angeschlossenen Zustand auf 30 mm ausgelegt. Das bedeutet, dass der Multi Cupla MALC-01 type auch gemischt mit dem MALC-SP type und dem MALC-HSP type auf der gleichen Platte installiert werden kann.
- Ein axiales Exzentrizitätsspiel von 2 mm verhindert eine präzise Zentrierung bei der Montage.
- Kompakte Bauform "mit Gewindeverschraubung" und "mit Flansch" lieferbar.

Technische Daten									
Gehäusewerkstoff	Buchse: Brass (Nickel plated) Stecker: Brass (Nickel plated)								
Druckeinheit	MPa kgf/cm² Bar				PSI				
Betriebsdruck	1,0	10		10		145			
Dichtungsmaterial	Dichtungsmaterial		Kennze	eichnung Betr		ebstemperaturbereich			
Betriebstemperaturbereich	Nitrile rubber		NBR (SG)		-20 °C bis +80 °C				

Max. Anzugsdrehmome	nt Nm {kgf·cm}
Gewindeverschraubung	15 {153}
Flansch	1,5 {15}

Austauschbarkeit

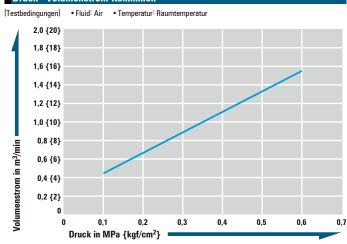
Buchse und Stecker des MALC-01-Typs können unabhängig von der Endkonfiguration angeschlossen werden.

Nicht austauschbar mit MALC-SP-Typ (für Mitteldruckbetrieb), MALC-1SP- oder MALC-HSP-Typ (für Hochdruckbetrieb) und MALC-1HSP-Typ.

Min. Querschnittsfläch	e (mm²)
Min. Querschnittsfläche	28

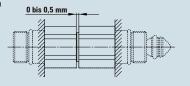
Eignung für Vakuum

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

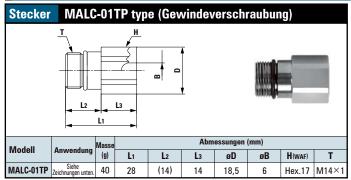

Die Last, die für die Aufrechterhaltung der Verbindung erforderlich ist, wenn die Leitung unter Druck steht.

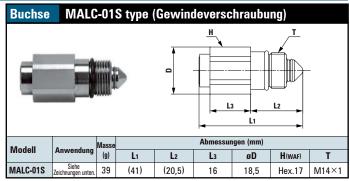
$$F = (P \times 160) + 50 \{ f = p \times 1, 6 + 5 \}$$

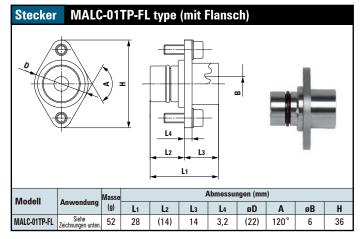
Mindestlast für die Aufrechterhaltung der Verbindung erforderlich F [N] {f [kgf]} Istwert des Drucks P [MPa] {p [kgf/cm²]}

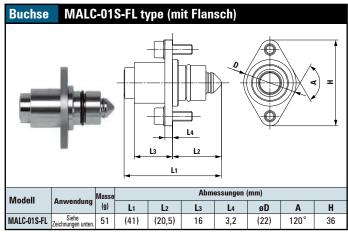

Ordnen Sie den Istwert des Drucks [P (MPa), p (kgf/cm²)] der obigen Formel zu. Halten Sie die Verbindung mit dieser Last [F (N), f (kgf)] oder mehr aufrecht. Die maximal zulässige Last beträgt jedoch 500 N {51 kgf}.

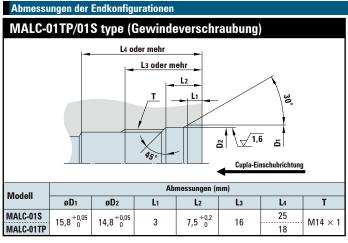
Druck - Volumenstrom-Kennlinien

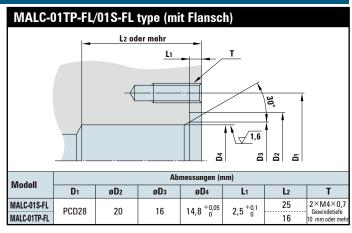


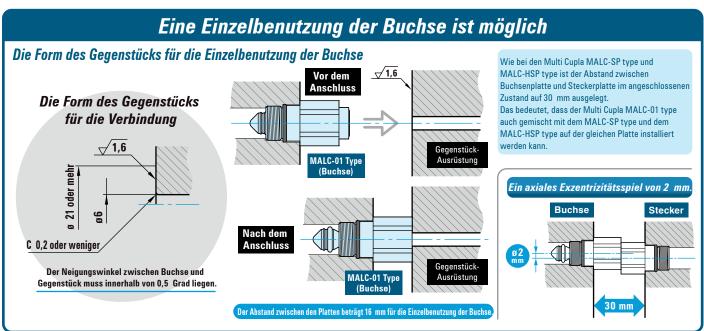

Zulässiger Abstand zwischen den Platten


Buchse und Stecker bzw. Platte müssen miteinander in Kontakt stehen. Maximal 0,5 mm Abstand zwischen Buchse und Stecker bzw. Platte sind zulässig.









Für Multi-Port-Verbindung (automatisch) **Multi Cupla** MALC-SP Type für Mitteldruckanwendungen Niedriger Überlauf für den Einsatz bei mittlerem Druck

Ein einziger Arbeitsgang ermöglicht die gleichzeitige Verbindung mehrerer Leitungen. Eine spezielle Konstruktion für den Mitteldruckeinsatz minimiert die Luftbeimischung in Fluidleitungen beim Anschluss.

- Im Vergleich zu herkömmlichen Multi Cuplas werden etwa doppelte Volumenströme realisiert. Dies könnte die Größe der benötigten Platten reduzieren. (Die Durchflusszunahme hängt von den Cupla-Größen ab.)
- Der MALC-Typ realisiert ein axiales Exzentrizitätsspiel von 2 mm, während der konventionelle Multi Cupla hier nur 0.6 mm aufweist.
- Eine spezielle Ventilausführung ermöglicht den Anschluss von Buchse und Stecker unter Druck von bis zu 2 MPa. (bis zu 1,5 MPa für MALC-12SP.)
- Im angeschlossenen Zustand beträgt der Abstand zwischen Buchsenplatte und Steckerplatte bei allen Größen 30 mm. Das bedeutet, dass Cuplas jeder Größe auf der gleichen Platte montiert und verwendet werden können.
- Niedrigüberströmventile minimieren den Abfluss des Fluids und die Beimischung von Luft in die Fluidleitung.

Technische Daten								
Gehäusew	erkstoff		Stainless steel (Buchsengehäuse: Nickel plated)					
Gewindeverschraubung		chraubung	MALC-1SP	MALC-2 bis 8SP	MALC-12SP			
Modell	Modell Flans		-	MALC-2 bis 8SP-FL	-			
S	Spreng	gring	ı	MALC-8SP-10F	MALC-12SP(-F/-16F)			
	MPa		7,0 (2,0)	5,0 (2,0)	1,5 (1,5)			
Retriehsdr	uck *	kgf/cm ²	71 (20)	51 (20)	15 (15)			
Detriensur	uok	Bar	70 (20)	50 (20)	15 (15)			
			1020 (290)	725 (290)	218 (218)			
Dichtungs	Dichtungsmaterial Betriebstemperaturbereich		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich			
Betriebste			Fluoro rubber	FKM (X-100)	-20°C bis +180°C			

^{*} Der Wert in Klammern ist der maximale Betriebsdruck der einzelnen Stecker bzw. Buchsen

Max. Anzugsdrehmoment Nm {kg										
Modell	1SP	2SP	3SP	4SP	6SP	8SP	12SP	12SP-16F		
Gewindeverschraubung	20 {204}	30 {306}	35 {357}	45 {460}	60 {612}	75 {765}	80 {816}	-		
Flansch	-	7 {71,5}	7 {71,5}	7 {71,5}	7 {71,5}	23 {235}	-	-		
Sprengring	-	-	ı	ı	-	260 {2652}	280 {2856}	350 {3570}		

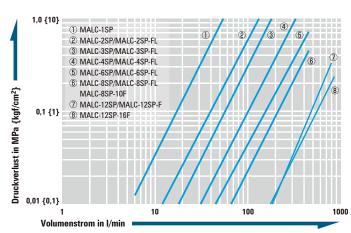
Buchsen und Stecker gleicher Größe können unabhängig von ihrer Endkonfiguration miteinander verbunden werden.

Min. Querschnittsfläche (mm²)									
Modell	1SP	2SP(-FL)	3SP(-FL)	4SP(-FL)	6SP(-FL)	8SP(-FL/-10F)	12SP(-F/-16F)		
Min. Querschnittsfläche	26	49,5	87	153	227	347	795		

Eignung für Vakuum

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

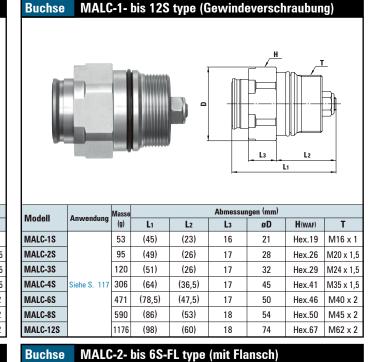
Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren.									
Modell	dell 1SP 2SP(-FL) 3SP(-FL) 4SP(-FL) 6SP(-FL) 8SP(-FL/-10F) 12S								
Luftvolumen	0,08	0,14	0,26	0,55	0,95	0,85	1,46		

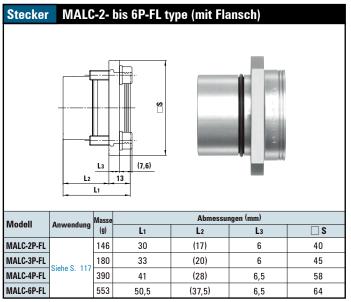

Verschüttetes Volumen pro Trennung Kann je nach Einsatzbedingungen variieren.										
Modell	1SP 2SP(-FL) 3SP(-FL) 4SP(-FL) 6SP(-FL) 8SP(-FL/-10F)									
Verschüttungsvolumen	0,08	0,14	0,26	0,55	0,95	0,85	1,46			

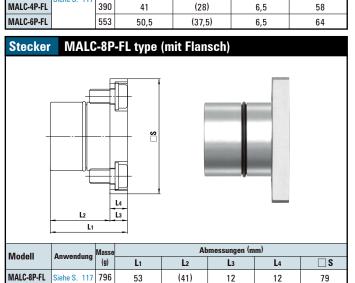
Die Last, die für die Aufrechterhaltung der Verbindung erforderlich ist, wenn die Leitung unter Druck steht.										
Modell	1SP	2SP(-FL)	3SP(-FL)	4SP(-FL)	6SP(-FL)	8SP(-FL/-10F)	12SP(-F/-16F)			
Maximal zulässige Belastung N {kgf}	2800 {286}	4500 {459}	5600 {571}	10000 {1019}	14000 {1427}	15600 {1591}	8200 {837}			
Erforderliche Mindestlast für die Aufrechterhaltung der Verbindung N {kaf} *	PX 1/U T 00		1	1	P x 1160 + 260 {p x 11,6 + 26}	l				

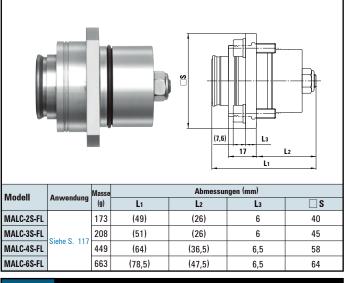

^{*} Ordnen Sie den Istwert des Drucks [P (MPa), p (kgf/cm²)] der obigen Formel zu, um die Belastung zu berechnen. Halten Sie die Verbindung mit der Mindestlast oder einer höheren Last, die aber die maximal zulässige Last

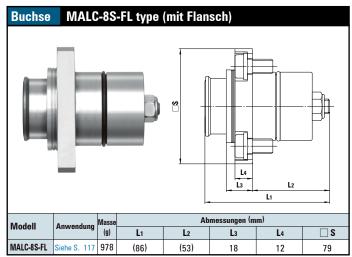
Volumenstrom - Druckverlustcharakteristik

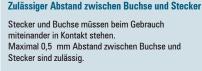

[Testbedingungen] • Fluid: Water • Temperatur: 19 °C bis 25 °C

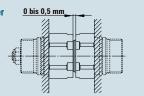



Modelle und Abmessungen




Modell	Anwendung	Masse	Abmessungen (mm)							
Wouell	Allwelluully	(g)	L ₁	L2	Lз	øD	H(WAF)	T		
MALC-1P		40	32	(18)	14	21	Hex.19	M16 x 1		
MALC-2P		75	33	(20)	13	28	Hex.26	M20 x 1,5		
MALC-3P		95	33	(20)	13	32	Hex.29	M24 x 1,5		
MALC-4P	Siehe S. 117	248	41	(28)	13	45	Hex.41	M35 x 1,5		
MALC-6P		369	50,5	(37,5)	13	50	Hex.46	M40 x 2		
MALC-8P		399	53	(41)	12	54	Hex.50	M45 x 2		
MALC-12P		724	57	(45)	12	74	Hex.67	M62 x 2		





7 + 0,05

 $P_2 \pm 0.05$

28

31

40

45

55

Abmessungen (mm)

L₁

28

19

28

22

39

30.5

50

40

53

43

P1 ±0,1

P₂

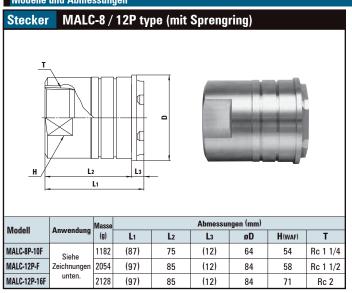
14

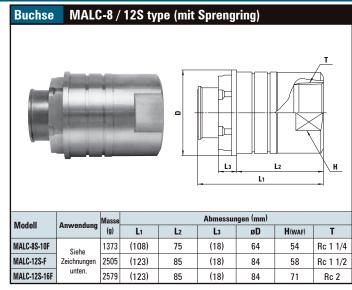
15,5

20

22,5

27,5

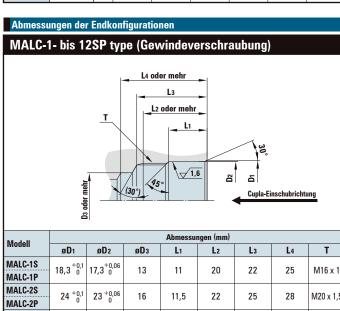

Т


4 x M6

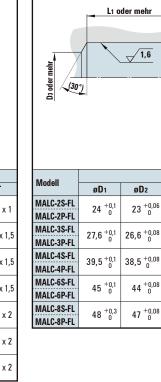
Gewindetiefe

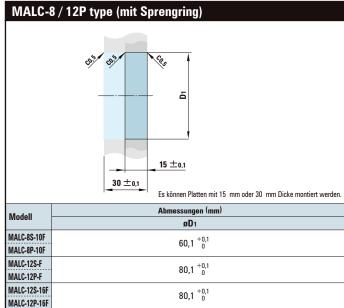
17 mm oder me

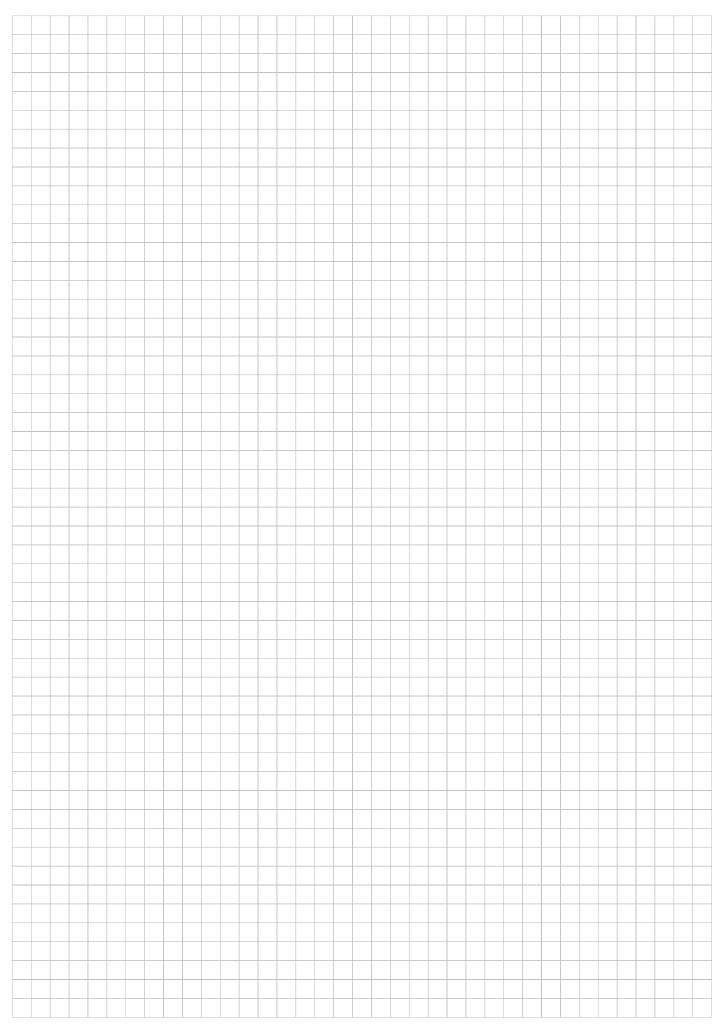
4 x M10 Gewindetiefe 15 mm oder meh


D2

øDз


18


30


MALC-2- bis 8SP-FL type (mit Flansch)

Modell				Abmessu	ngen (mm)			
Wouell	øD1	øD2	øDз	L ₁	L ₂	Lз	L4	T
MALC-1S MALC-1P	18,3 ^{+0,1}	17,3 ^{+0,06}	13	11	20	22	25	M16 x 1
MALC-2S MALC-2P	24 +0,1	23 +0,06	16	11,5	22	25	28	M20 x 1,5
MALC-3S MALC-3P	27,6 ^{+0,1}	26,6 ^{+0,08}	18	11	22	25	29	M24 x 1,5
MALC-4S MALC-4P	39,5 ^{+0,1}	38,5 ^{+0,08}	26	15,5	30	33	40,5	M35 x 1,5
MALC-6S MALC-6P	45 ^{+0,1}	44 +0,08	30	20	40	44	51,5	M40 x 2
MALC-8S MALC-8P	48 +0,3	47 ^{+0,08}	35	27	43	47	55	M45 x 2
MALC-12S MALC-12P	66 ^{+0,3}	64 ^{+0,1}	45	30	50	54	65	M62 x 2

Für Multi-Port-Verbindung (automatisch) **Multi Cupla** MALC-HSP Type für Hochdruckanwendungen Ausführung mit niedrigem Überlauf für Hochdruckanwendungen

Ein einziger Arbeitsgang ermöglicht die gleichzeitige Verbindung mehrerer Leitungen. Eine spezielle Konstruktion minimiert die Luftbeimischung in Fluidleitungen beim Anschluss. Geeignet für Hochdruck-Hydraulikkreise.

- Im Vergleich zu herkömmlichen Multi Cuplas werden etwa doppelte Volumenströme realisiert. Dies könnte die Größe der benötigten Platten reduzieren. (Die Durchflusszunahme hängt von den Cupla-Größen ab.)
- Der MALC-Typ realisiert ein axiales Exzentrizitätsspiel von 2 mm, während der konventionelle Multi Cupla hier nur 0,6 mm aufweist.
- Eine spezielle Ventilausführung ermöglicht den Anschluss von Buchse und Stecker unter Staudruck von bis zu 8 MPa.
- Im angeschlossenen Zustand beträgt der Abstand zwischen Buchsenplatte und Steckerplatte bei allen Größen 30 mm. Das bedeutet, dass Cuplas jeder Größe auf der gleichen Platte montiert und verwendet werden können.
- Niedrigüberströmventile minimieren den Abfluss des Fluids und die Beimischung von Luft in die Fluidleitung.

Technis	Technische Daten									
Gehäusew	erkstoff		Spec	ial steel (Nickel pl	ated)				
Modell	Modell Gewindeverschraubung Flansch		MALC-1HSI	P	MA	LC-2 bis 8HSP				
Wodell			-		MALC-2 bis 8HSP-FL					
MF		MPa	25,0 (8,0)		21,0 (8,0)					
Betriehsdr	uck *	kgf/cm ²	255 (81)		214 (81)					
Dottiobati	uok	Bar	250 (80)		210 (80)					
		PSI	3630 (1160)	;	3050 (1160)				
Dichtungsı	Dichtungsmaterial Betriebstemperaturbereich		Dichtungsmaterial	Kennze	ichnung	Betriebstemperaturbereich				
Betriebste			Fluoro rubber	FKM (X-100)	-20 °C bis +180 °C				

^{*} Der Wert in Klammern ist der maximale Betriebsdruck der einzelnen Stecker bzw. Buchsen

Max. Anzugsdrehmoment Nm {								
Modell	1HSP	2HSP	3HSP	4HSP	6HSP	8HSP		
Gewindeverschraubung	30 {306}	50 {510}	53 {540}	65 {663}	80 {816}	95 {969}		
Flansch	í		30 {306}					

Austauschbarkeit

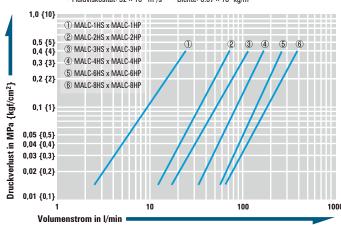
Buchsen und Stecker gleicher Größe können unabhängig von ihrer Endkonfiguration miteinander verbunden werden.

Min. Querschnittsfläche (mm²)										
Modell	1HSP	2HSP	3HSP	4HSP	6HSP	8HSP				
Min. Querschnittsfläche	26	49,5	87	153	227	347				

Eignung für Vakuum

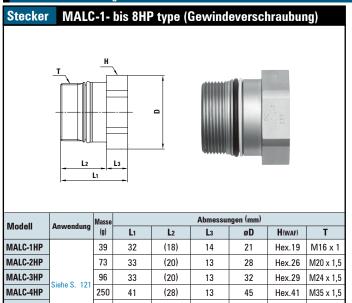
Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

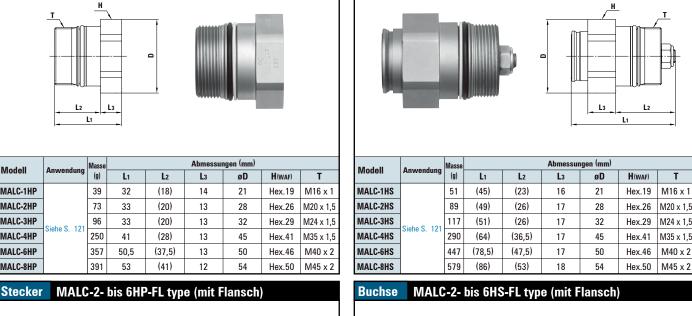
Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren.								
Modell	1HSP	2HSP	3HSP	4HSP	6HSP	8HSP		
Luftvolumen	0,08	0,14	0,26	0,55	0,95	0,85		

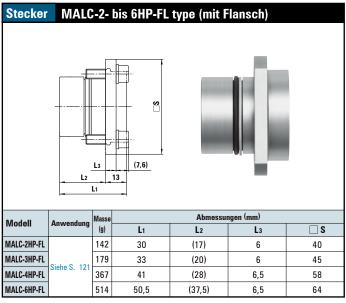

Verschüttetes Volumen pro Trennung Kann je nach Einsatzbedingungen variieren. (ml.)									
Modell	lell 1HSP 2HSP 3HSP 4HSP 6HSP 8								
Verschüttungsvolumen	0,08	0,14	0,26	0,55	0,95	0,85			

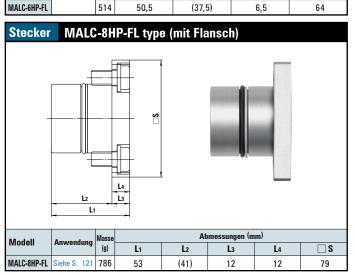
Die Last, die für die Aufr	Die Last, die für die Aufrechterhaltung der Verbindung erforderlich ist, wenn die Leitung unter Druck steht.										
Modell	1HSP	2HSP	3HSP	4HSP	6HSP	8HSP					
Maximal zulässige Belastung N {kgf}	9300 {948}	16500 {1683}	22000 {2244}	40500 {4130}	55000 {5609}	64500 {6577}					
Erforderliche Mindestlast für die Aufrechterhaltung der Verbindung N {kgf} *	1 1 1 1 0 1 0 3		l		Px1160+260 {px11,6+26}						

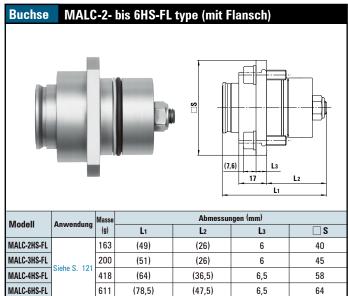
Ordnen Sie den Istwert des Drucks [P (MPa), p (kgf/cm²)] der obigen Formel zu, um die Belastung zu berechnen. Halten Sie die Verbindung mit der Mindestlast oder einer höheren Last, die aber die maximal zulässige Last nicht überschreiten darf, aufrecht

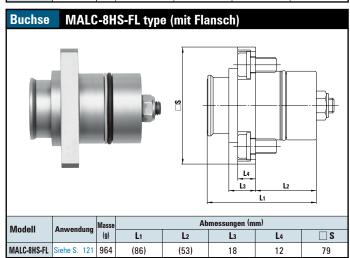

Volumenstrom - Druckverlustcharakteristik

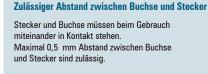

• Fluid: Hydraulic oil • Temperatur: 30 °C ± 5 °C • Fluidviskosität: 32 x 10⁻⁶ m²/s • Dichte: 0.87 x 10³ kg/m³

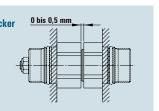


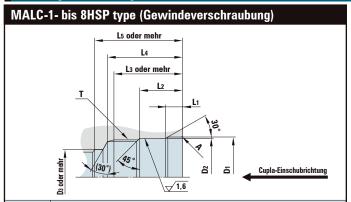

MALC-1- bis 8HS type (Gewindeverschraubung)

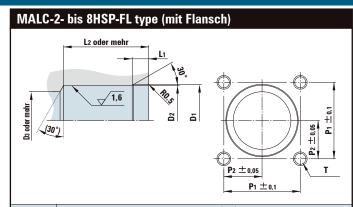

Modelle und Abmessungen

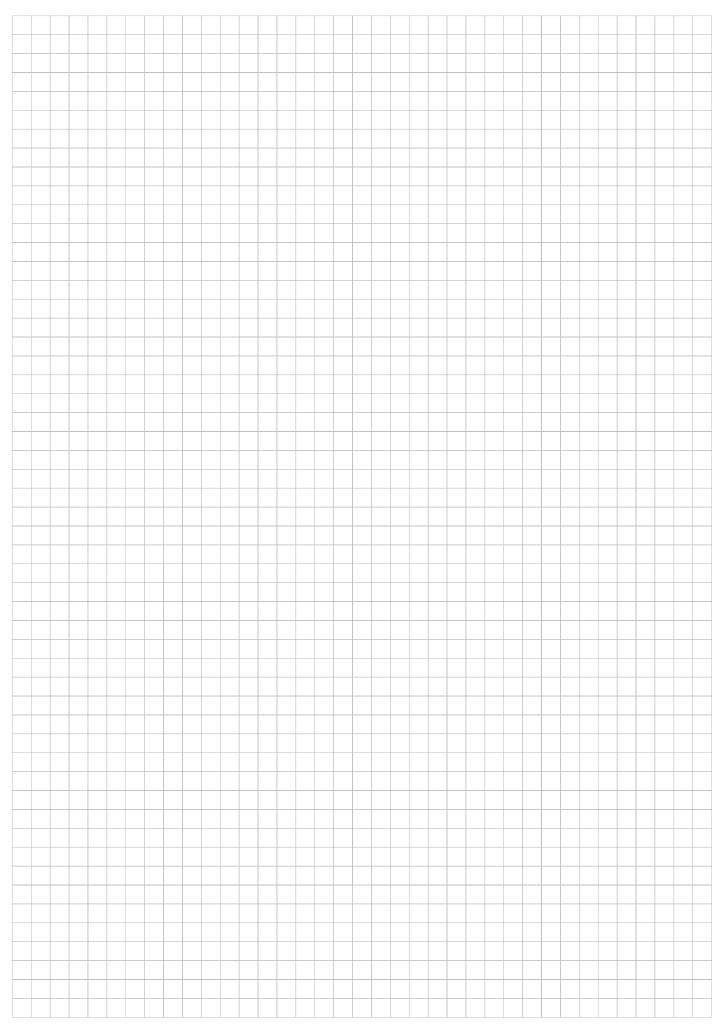












Modell				Abme	essunge	n (mm)				
IVIOUEII	øD1	øD2	øDз	L ₁	L2	Lз	L4	L ₅	T	Α
MALC-1HS MALC-1HP	17,8 ^{+0,1}	16,8 ^{+0,06}	13	3,5 ^{+0,2}	11	20	22	25	M16 x 1	C0.2
MALC-2HS MALC-2HP	23 +0,1	22 +0,06	16	2,8 +0,2	11	22	25	28	M20 x 1,5	R0.5
MALC-3HS MALC-3HP	27,1 ^{+0,1}	26 ^{+0,08}	18	2,8 +0,2	11	22	25	29	M24 x 1,5	R0.5
MALC-4HS MALC-4HP	37,7 ^{+0,3}	36,5 ^{+0,08}	26	6 ^{±0,2}	18	30	33	40,5	M35 x 1,5	R0.5
MALC-6HS MALC-6HP	42,5 +0,3	41,5 +0,08	30	6 ^{±0,2}	23	40	44	51,5	M40 x 2	R0.5
MALC-8HS MALC-8HP	47,5 ^{+0,3}	46,5 ^{+0,08}	35	10,5 ^{±0,2}	27	43	47	55	M45 x 2	R0.5

Modell		Abmessungen (mm)									
woden	øD1	øD2	øDз	L ₁	L2	P ₁	P ₂	T			
MALC-2HS-FL MALC-2HP-FL	23 +0,1	22 +0,06	16	2,8 +0,2	28 19	28	14				
MALC-3HS-FL MALC-3HP-FL	27,1 ^{+0,1}	26 ^{+0,08}	18	2,8 +0,2	28 22	31	15,5	4 x M6 Gewindetiefe			
MALC-4HS-FL MALC-4HP-FL	37,7 ^{+0,3}	36,5 ^{+0,08}	26	6 ^{±0,2}	39 30,5	40	20	17 mm oder mehr			
MALC-6HS-FL MALC-6HP-FL	42,5 ^{+0,3}	41,5 +0,08	30	6 ^{±0,2}	50 40	45	22,5				
MALC-8HS-FL MALC-8HP-FL	47,5 ^{+0,3}	46,5 ^{+0,08}	35	10,5 ^{±0,2}	53 43	55	27,5	4 x M10 Gewindetiefe 15 mm oder mehr			

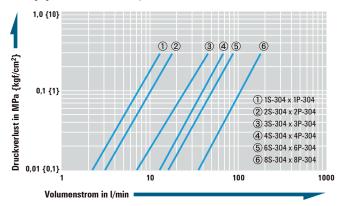
Semicon Cupla **SP Type**

Für Produktionsanlagen zur Herstellung von Halbleitern

Universalausführung mit Edelstahlgehäuse und Gummidichtung. Elektropoliertes Gehäuse für erhöhte Korrosionsbeständigkeit.

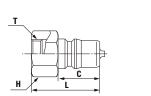
- Gehäuse und Ventilfedern sind aus Edelstahl (SUS304). Gehäuse ist elektropoliert für erhöhte Korrosionsbeständigkeit.
- Die Dichtungsmaterialien können ie nach Fluid und Anwendung ausgewählt werden, um flexibel auf die Anforderungen Ihres Halbleiterherstellungsprozesses einzugehen.
- · Alle Komponenten werden gereinigt, montiert, geprüft und anschließend in einem Reinraum verpackt.
- Fettfrei. Das Dichtungsmaterial wird nicht gefettet.
- Jeder Stecker wird mit einer Staubschutzkappe geliefert.
- Gehäuse SUS316 und Ventilfedern aus Edelstahl sind als Sonderanfertigungen erhältlich.

Technische Daten Gehäusewerkstoff Electropolished stainless steel (SUS304) 1/8", 1/4", 3/8", 1/2", 3/4", 1" Größe (Gewinde) 1/8-27NPT, 1/4-18NPT, 19/32-18UNS Druckeinheit MPa kaf/cm² PSI Betriebsdruck 0,2 Kennzeichnung Dichtungsn Fluoro rubber FKM (X-100) 0 °C bis +50 °C Standardmaterial Betriebstemperaturbereich Ethylene-propylene rubber EPDM (EPTS) 0 °C bis +50 °C Standardmaterial des Dichtungsmaterials 0 °C bis +50 °C Standardmaterial Perfluoroelastomer Kalrez 0 °C bis +50 °C Standardmaterial


Max. Anzugsdrehmoment Nm {kgf⋅cm}								
Größe	1/8-27NPT Rc 1/8	1/4-18NPT Rc 1/4	19/32- 18UNS	Rc 3/8	Rc 1/2	Rc 3/4	Rc 1	
Drehmoment	9 {92}	14 {143}	20 {204}	22 {224}	60 {612}	90 {918}	120 {1224}	

Die Modellnamen, die mit der gleichen Ziffer beginnen, sind unabhängig von der Endkonfiguration

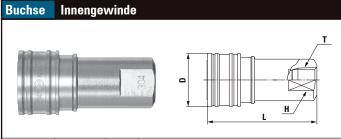
Min. Cross-Sectional Area (mm²)									
Modell	1SP	2SP	3SP	4SP	6SP	8SP			
Min. Querschnittsfläche	13	17	48	64	83	192			


Volumenstrom – Druckverlustcharakteristik

[Testbedingungen] • Fluid: Water • Temperatur: 20 °C ±5 °C

Modelle und Abmessungen

Stecker


Innengewinde

Modell	D-1-141	Masse	Abmessungen (mm)						
Modell	Behälterkapazität	(g)	L	C	H(WAF)	T			
1P-304	Für 10 bis 20	19	29	19	Hex.14	Rc 1/8			
1P-304-NPT	Für 10 bis 20	15	29	13	1163.14	1/8-27NPT			
1P-304-UNS	Für 10 bis 20	34	33	19	Hex.21	19/32-18UNS			
2P-304	Für 10 bis 20	35	36	22	Hex.17	Rc 1/4			
2P-304-NPT	Für 10 bis 20	33		22	IICX.II	1/4-18NPT			
2P-304-UNS	Für 10 bis 20	41	36	22	Hex.21	19/32-18UNS			
3P-304	Für 100 bis 200	60	40	25	Hex.21	Rc 3/8			
4P-304	Für 100 bis 200	115	44	28	Hex.29	Rc 1/2			
6P-304	Für 100 bis 200	216	52	36	Hex.35	Rc 3/4			
8P-304	Für 100 bis 200	352	62	40	Hex.41	Rc 1			

* Oben finden Sie die Abmessungen des SUS304.

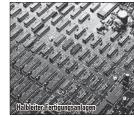
WAF: WAF steht für Schlüsselweite ("Width Across Flats")

Modell	D-1-141	Masse (g)		Abmessungen (mm)						
iviodeli	Behälterkapazität		L	øD	H(WAF)	T				
1S-304	Für 10 bis 20	82	48	24	14	Rc 1/8				
1S-304-NPT	Für 10 bis 20	84	40	24	14	1/8-27NPT				
2S-304	Für 10 bis 20	138	58	28	19	Rc 1/4				
2S-304-NPT	Für 10 bis 20	130		20	19	1/4-18NPT				
3S-304	Für 100 bis 200	204	65	35	21	Rc 3/8				
4S-304	Für 100 bis 200	424	72	45	29	Rc 1/2				
6S-304	Für 100 bis 200	708	88	55	35	Rc 3/4				
8S-304	Für 100 bis 200	1081	102	65	41	Rc 1				

^{*} Das Aussehen der Gehäuse von SUS304 und 316 ist unterschiedlich.

Semicon Cupla SCS Type

Für Halbleiter-Fertigungsanlagen



Eingesetzt werden Edelstahlgehäuse und Ventile aus fluorhaltigem Harz.

- Das Gehäuse und das Federmaterial aus Edelstahl (SUS304), sowie das Ventil aus fluorhaltigem Harz gewährleisten eine hervorragende Leistung bei verschiedenen Chemikalien.
- Das Gehäuse (SUS304) wurde für eine erhöhte Korrosionsbeständigkeit elektropoliert.
- Alle Komponenten werden gereinigt, montiert, geprüft und anschließend in einem Reinraum verpackt.
- Fettfrei. Das Dichtungsmaterial wird nicht gefettet.
- Der Stecker wird mit einer Staubschutzkappe geliefert.

Technische Daten									
Gehäusewerkstoff		Electropolished stainless steel (SUS304)							
Größe (Gewinde)		1/8", 1/4", 3/8", 1/2", 3/4", 1" 1/8-27NPT, 1/4-18NPT, 19/32-18UNS							
Druckeinheit		MPa	MPa kgf/cm² Bar PSI						
Betriebsdruck		0,2	2	2	29				
P' I	0-Ring	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke				
Dichtungsmaterial Betriebstemperaturbereich	der Buchse	Perfluoroelastomer	Р	0 °C bis +50 °C	Standardmaterial				
	Ventil	Fluoropolymer resi	n (Buchse: PFA,	Stecker: PTFE außer 1	P und 2P von PFA)				

*Wenn Sie ein anderes Dichtungsmaterial als Perfluorelastomer benötigen, wenden Sie sich bitte an uns.

Max. Anzugsdrehmoment Nm {kgf·cm}								
Größe	1/8-27NPT Rc 1/8	1/4-18NPT Rc 1/4	19/32- 18UNS	Rc 3/8	Rc 1/2	Rc 3/4	Rc 1	
Drehmoment	9 {92}	14 {143}	20 {204}	22 {224}	60 {612}	90 {918}	120 {1224}	

Modellnamen {SCS- \square S (P)} mit der gleichen Ziffer in \square sind unabhängig von der Endkonfiguration untereinander austauschbar.

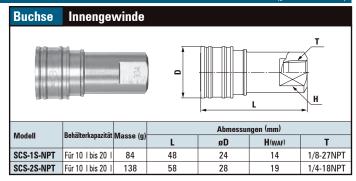

Austauschbarkeits-Checkliste (SCS-Typ, SCY-Typ

	 kennzeichnet die Anschlussfähigkeit mit Ausnahme von Sonderanfertigungen. 										
	Buchse										
	SCS-Typ SCY-Typ										
	IV	lodell	-1S	-2S	-18	-28	-3S	-4S	-6S	-8S	
		-1P	•		•						
Stecker		-2P		•		•					
	SCS-	-3P					•				
	Тур	-4P						•			
		-6P							•		
		-8P								•	

Min. Querschnittsfläche (mm²)									
Modell	SCS-1SP	SCS-2SP	SCS-3P	SCS-4P	SCS-6P	SCS-8P			
Min. Querschnittsfläche	15	23	28	71	110	162			

Volumenstrom - Druckverlustcharakteristik

[Testbedingungen]



Modelle und Abmessungen

Stecker Innengewinde

	B 1 " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Abmessungen (mm)						
Modell	Behälterkapazität	Masse (g)	L	С	H(WAF)	T				
SCS-1P	Für 10 bis 20	17	29	19	Hex.14	Rc 1/8				
SCS-1P-NPT	Für 10 bis 20	17	23	19	Hex.14	1/8-27NPT				
SCS-1P-UNS	Für 10 bis 20	34	33	19	Hex.21	19/32-18UNS				
SCS-2P	Für 10 bis 20	32	34	22	Hex.17	Rc 1/4				
SCS-2P-NPT	Für 10 bis 20	29	34	22	nex.17	1/4-18NPT				
SCS-2P-UNS	Für 10 bis 20	41	36	22	Hex.21	19/32-18UNS				
SCS-3P	Für 100 bis 200	61	40	25	Hex.21	Rc 3/8				
SCS-4P	Für 100 bis 200	114	44	28	Hex.29	Rc 1/2				
SCS-6P	Für 100 bis 200	198	52	36	Hex.35	Rc 3/4				
SCS-8P	Für 100 bis 200	338	62	40	Hex.41	Rc 1				

WAF: WAF steht für Schlüsselweite ("Width Across Flats")

Für hochreine Chemikalien **Semicon Cupla SCY Type** Für Halbleiter-Fertigungsanlagen

Packungsdichtungen aus fluorhaltigem Harz und aus perfluoroelastomer werden verwendet, um die erforderliche Verbindungslast zu reduzieren und eine gute Abdichtung zu erreichen.

- Das Material des Gehäuses und der Feder ist aus Edelstahl (SUS304), das des Ventils aus fluorhaltigem Harz. Die Kombination zeigt eine hervorragende Leistung mit verschiedenen Chemikalien.
- Das Gehäuse (SUS304) wurde für eine erhöhte Korrosionsbeständigkeit elektropoliert.
- · Alle Komponenten werden gereinigt, montiert, geprüft und anschließend in einem Reinraum verpackt.
- Fettfrei. Das Dichtungsmaterial wird nicht gefettet.
- Der Flanschkörper macht die Bedienung auch mit Handschuhen einfach.

Technische Daten										
Gehäusewerkstoff		Electro	polished stair	nless steel (SUS30	04)					
Größe (Gewinde)		1	1/8", 1/4", 3/8", 1/2", 3/4", 1" 1/8-27NPT, 1/4-18NPT							
Druckeinheit		MPa	kgf/cm²	Bar	PSI					
Betriebsdruck		0,2	2	2	29					
	Destant	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke					
Dichtungsmaterial Betriebstemperaturbereich	Buchsen- Packungsdichtung	Perfluoroelastomer Fluoropolymer resin	· · · ·	0 °C bis +50 °C	Standardmaterial					
	Ventil	Fluoropolyme	er resin (PTFE	außer 1P und 2P	von PFA)					

^{*}Wenn Sie ein anderes Dichtungsmaterial als Perfluorelastomer benötigen, wenden Sie sich bitte an uns

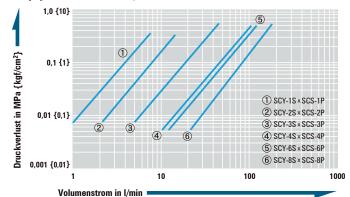
Max. Anzugsdrehmoment

Nm {kgf·cm}

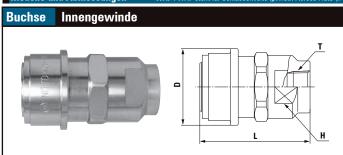
Siehe Seite 124 über den Semicon Cupla SCS Type.

Austauschbarkeit

Kann mit gleich großen Steckern des SCS-Typs verbunden werden. Siehe untenstehende Tabelle für Details


Austauschbarkeits-Checkliste (SCS-Typ, SCY-Typ

	 kennzeichnet die Anschlussfähigkeit mit Ausnahme von Sonderanfertigungen. 									
	Buchse									
	_		scs	-Тур			SCY	-Тур		
	I.	lodell	-1S	-28	-18	-2S	-3S	-4S	-6S	-8S
		-1P	•		•					
Stecker		-2P		•		•				
	SCS-	-3P					•			
	Тур	-4P						•		
		-6P							•	
		OD.								•


Min. Querschn	Min. Querschnittsfläche (mm²)						
Modell	SCY-1S	SCY-2S	SCY-3S	SCY-4S	SCY-6S	SCY-8S	
Min. Querschnittsfläche	15	23	28	71	110	162	

Volumenstrom – Druckverlustcharakteristik

[Testbedingungen] • Fluid: Water Temperatur: 20 °C ±5 °C

Modelle und Abmessungen WAF: WAF steht für Schlüsselweite ("Width Across Flats")

Modell	Dahiltanlananisis	N/1 (-)	Abmessungen (mm)					
ivioaeii	Behälterkapazität	iviasse (g)	L	øD	H(WAF)	T		
SCY-1S	Für 10 bis 20	116	(48)	29	18	Rc 1/8		
SCY-1S-NPT	Für 10 bis 20	110	(40)	29	10	1/8-27NPT		
SCY-2S	Für 10 bis 20	180	(58)	33	22	Rc 1/4		
SCY-2S-NPT	Für 10 bis 20	100		33	22	1/4-18NPT		
SCY-3S	Für 100 bis 200	292	(65)	39	27	Rc 3/8		
SCY-4S	Für 100 bis 200	519	(72)	50	35	Rc 1/2		
SCY-6S	Für 100 bis 200	862	(88)	59	41	Rc 3/4		
SCY-8S	Für 100 bis 200	1360	(102)	68	50	Rc 1		
SCY-4S SCY-6S	Für 100 bis 200 Für 100 bis 200	519 862	(72) (88)	50 59	35 41	Rc 1/2 Rc 3/4		

Semicon Cupla SCT Type

Für Halbleiter-Fertigungsanlagen

Für das Gehäuse wird Polytetrafluorethylen (PTFE) verwendet.

- Das Gehäuse aus Polytetrafluorethylen (PTFE) bietet eine hervorragende Chemikalienbeständigkeit.
- Sowohl die Buchse als auch der Stecker sind mit automatischen Absperrventilen ausgestattet, die das Austreten von Fluids beim Trennen verhindern.
- Da keine Metallionen aus flüssigkeitsberührten Teilen aufgelöst werden, wird eine hohe Zuverlässigkeit gewährleistet.
- Alle Komponenten werden gereinigt, montiert, geprüft und anschließend in einem Reinraum verpackt.
- Das passende Modell kann aus einer Vielzahl von Größen für Ihre Anwendung bzw. Ihr Fluid ausgewählt werden.
- Optionale Keilnutverriegelung zur Vermeidung von Fehlanschlüssen. Es stehen 10 Keilnutenmuster zur Verfügung.

Technische Daten								
Gehäusewerkstoff		Polytetrafluoroethylene (PTFE)						
Größe (Gewinde)		1/4-18NPT, 3/8	1/4", 3/8", 1/2", 3/4", 1" 1/4-18NPT, 3/8-18NPT, 1/2-14NPT, 3/4-14NPT, 1-11,5NPT					
Druckeinheit		MPa	kgf/cm²	Bar	PSI			
Betriebsdruck		0,2	2	2	29			
	0-Ring	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Dichtungsmaterial Betriebstemperaturbereich	der Buchse	FEP-covered fluoro rubber	-	+5 °C bis +50 °C	Standardmateria			
	Ventil		Fluoropolymer resin (PFA)					

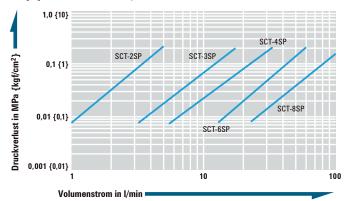
Mit auf dem Außengewinde aufgewickeltem Dichtband von Hand festschrauben und dann mit einem Schraubenschlüssel nachziehen, wie unten gezeigt.

1 4 bis 2 Umdrehungen

Größen von 1/4" • 3/8" • 1/2" • 3/4" • 1"

Egal welche Methode angewendet wird: Übermäßiges Anziehen kann das Gewinde beschädigen und zu Leckagen führen. Seien Sie daher besonders vorsichtig.

Buchse

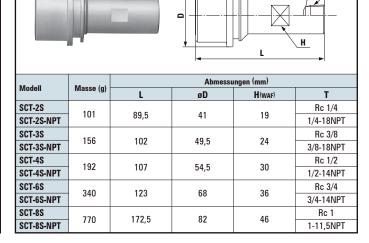

Modellnamen {SCT-□S (P)} mit der gleichen Ziffer in □ sind unabhängig von der Endkonfiguration untereinander austauschbar.

Min. Quersch	Min. Querschnittsfläche (mm²)							
Modell	SCT-6SP	SCT-8SP						
Min. Querschnittsfläche	12	34	54	103	225			

Volumenstrom - Druckverlustcharakteristik

[Testbedingungen] • Fluid: Water • Temperatur: 23 °C ±3 °C

Innengewinde



Modelle und Abmessungen

Stecker Innengewinde

88. 4.11	B# (1)	Abmessungen (mm)						
Modell	Masse (g)	L	Α	øC	H(WAF)	T		
SCT-2P	42	F0	00.5	07.5	0.4	Rc 1/4		
SCT-2P-NPT	43	59	30,5	27,5	24	1/4-18NPT		
SCT-3P	77	77		CO F	22.5	24.5	30	Rc 3/8
SCT-3P-NPT		68,5	33,5	33,5 34,5	30	3/8-18NPT		
SCT-4P	01	91	COE	27.5	20.5	36	Rc 1/2	
SCT-4P-NPT	31	69,5	37,5	39,5	30	1/2-14NPT		
SCT-6P	160	78,5	45	48	41	Rc 3/4		
SCT-6P-NPT	100	70,0	40	40	41	3/4-14NPT		
SCT-8P	200	112	60 E	59	50	Rc 1		
SCT-8P-NPT	300	300 112 60,5	บช	50	1-11,5NPT			

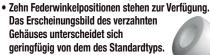
WAF: WAF steht für Schlüsselweite ("Width Across Flats")

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende "Anleitungsblatt" durch

- Verfügbare Endkonfigurationen sind ISO Rc-Innengewinde und NPT-Innengewinde
- * Stecker und Buchsen mit ISO Rc-Endkonfiguration haben als Kennzeichnung eine V-Nut am Gehäuse. (Bei NPT-Innengewinde gibt es keine V-Nut am Stecker- oder Buchsengehäuse.)
- * Andere Endkonfigurationen als Innengewinde (z. B. Flansch- oder Außengewinde) auf Anfrage.

Semicon Cupla SCAL Type

Für Halbleiter-Fertigungsanlagen



Gehäuse aus Polytetrafluorethylen (PTFE).

- Das Gehäuse aus Polytetrafluorethylen (PTFE) bietet eine hervorragende Chemikalienbeständigkeit.
- Einzigartiges Dichtungsdesign sorgt für minimalen Flüssigkeitsaustritt.
- Sowohl die Buchse als auch der Stecker sind mit automatischen Absperrventilen ausgestattet, die das Austreten von Fluids beim Trennen verhindern.
- Da keine Metallionen aus flüssigkeitsberührten Teilen aufgelöst werden, wird eine hohe Zuverlässigkeit gewährleistet.
- Push-to-connect-Ausführung.
- Der Flanschbuchsenkörper erleichtert das Herunterdrücken der Hülse auch mit Handschuhen.
- Alle Komponenten werden gereinigt, montiert, geprüft und anschließend in einem Reinraum verpackt.
- Die gewölbte Oberfläche des Steckerendes verhindert Flüssigkeitsverlust und schützt die Stecker-Dichtfläche vor Beschädigung bei Stürzen oder Schlägen.
- Um Fehlanschlüssen vorzubeugen, ist auf Bestellung eine verzahnte Hülse erhältlich.

Technische Daten							
Gehäusewerkstoff		Polytetrafluoroethylene (PTFE)					
Größe (Gewinde)		1/4-18NPT, 3/	1/4", 3/8", 1/2", 3/4", 1" 1/4-18NPT, 3/8-18NPT, 1/2-14NPT, 3/4-14NPT, 1-11,5NPT				
Druckeinheit		MPa	kgf/cm ²	Bar	PSI		
Betriebsdruck		0,2	2	2	29		
Pile (1)	0-Ring	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke		
Dichtungsmaterial Betriebstemperaturbereich	der Buchse	Perfluoroelastomer	Р	+5 °C bis +50 °C	Standardmaterial		
Deti iensteilihei arni nei eicii	Ventil		Fluoropolym	er resin (PFA)			

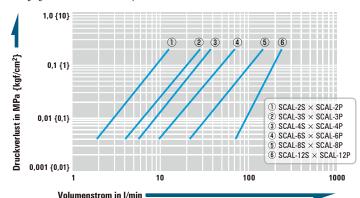
Max. Anziehdrehmoment (ca.)

Mit auf dem Außengewinde aufgewickeltem Dichtband von Hand festschrauben und dann mit einem Schraubenschlüssel nachziehen, wie unten gezeigt.

1 3 bis 2 Umdrehungen Größen von	1/4" • 3/8" • 1/2" • 3/4" • 1"
----------------------------------	--------------------------------

Egal welche Methode angewendet wird: Übermäßiges Anziehen kann das Gewinde beschädigen und zu Leckagen führen. Seien Sie daher besonders vorsichtig.

Austauschbarkeit

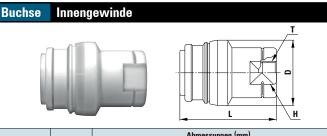

Modellnamen {SCAL-□S (P)} mit der gleichen Ziffer in □ sind unabhängig von der Endkonfiguration untereinander austauschbar.

Min. Querschnittsfläche (mm²)							
Modell (SCAL-□)	2S (-NPT) × 2P (-NPT)	3S (-NPT) × 3P (-NPT)	4S (-NPT) × 4P (-NPT)	6S (-NPT) × 6P (-NPT)	8S (-NPT) × 8P (-NPT)	12S (-NPT/-FL-P) × 12P (-NPT/-FL-P)	
Min. Querschnittsfläche	24	41	59	108	234	611	

Verschüttetes Volumen pro Trennung Das Verschüttungsvolumen kann je nach Einsatzbedingungen variieren. (ml)								
Modell (SCAL-□)								
Verschüttungsvolumen	0,07	0,09	0,13	0,20	0,59	1,26		

Volumenstrom - Druckverlustcharakteristik

[Testbedingungen] • Fluid: Water • Temperatur: 20 °C ±5 °C



Modelle und Abmessungen

Innengewinde Stecker

88 - 1 - 11	84 (-)	Abmessungen (mm)						
Modell	Masse (g)	L	øD	H(WAF)	T			
SCAL-2P	37	F0	27.5	24	Rc 1/4			
SCAL-2P-NPT	37	50	27,5	24	1/4-18NPT			
SCAL-3P	73	63	34.5	30	Rc 3/8			
SCAL-3P-NPT	/3	63	34,5	30	3/8-18NPT			
SCAL-4P	107	72	39.5	36	Rc 1/2			
SCAL-4P-NPT	107	12	39,5	30	1/2-14NPT			
SCAL-6P	153	77	48	41	Rc 3/4			
SCAL-6P-NPT	100	,,	40	41	3/4-14NPT			
SCAL-8P	348	109	59	50	Rc 1			
SCAL-8P-NPT	340	103	33	30	1-11,5NPT			
*SCAL-12P-NPT	740	126	80	75	1 1/2-11,5NPT			
*Sonderanfertigu	ng							

WAF: WAF steht für Schlüsselweite ("Width Across Flats").

	N# (-)		Abmessungen (mm)						
Modell	Masse (g)	L	øD	H(WAF)	T				
SCAL-2S	97	(00.5)	40.5	0.7	Rc 1/4				
SCAL-2S-NPT	97	(60,5)	40,5	27	1/4-18NPT				
SCAL-3S	135	(69.5)	47	32	Rc 3/8				
SCAL-3S-NPT	133	(09,5)	47	32	3/8-18NPT				
SCAL-4S	177	177	(76)	52	36	Rc 1/2			
SCAL-4S-NPT	177	(70)	52	30	1/2-14NPT				
SCAL-6S	339	(90)	65	46	Rc 3/4				
SCAL-6S-NPT	งงช	(30)	03	40	3/4-14NPT				
SCAL-8S	656	(109)	80	60	Rc 1				
SCAL-8S-NPT	030	(103)	00	00	1-11,5NPT				
*SCAL-12S-NPT	1580	(144,5)	108	80	1 1/2-11,5NPT				

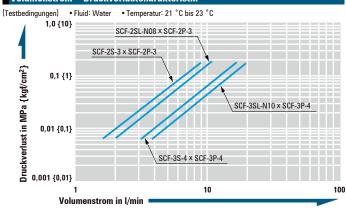
- Der Stecker wird mit einer Kappe aus hochdichtem Polyethylen (HDPE) geliefert.
 Das äußere Erscheinun
 Bitte fragen Sie uns nach anderen Endkonfigurationen als Innengewinde, wie z. B. Flansch und Außengewinde. Das äußere Erscheinungsbild des NPT-Gewindetyps unterscheidet sich geringfügig von dem obigen Typ.
 ansch und Außengewinde.
 Übermäßiges Anziehen beschädigt das Gewindeteil und führt zu Undichtigkeiten.
- Hinweis: Eine sehr geringe Gasmenge kann den Faltenbalg aus Polytetrafluorethylen (PTFE) in der Buchse durchdringen.

Semicon Cupla SCF Type

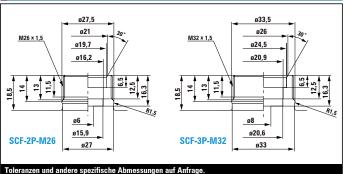
Für Halbleiter-Fertigungsanlagen

Das Modell ist vollständig aus Kunststoff. Gehäuse aus Fluorpolymerharz (PFA).

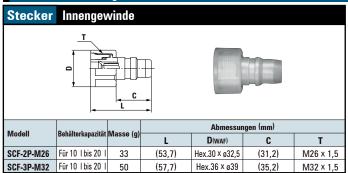
- Alle Teile aus Fluorpolymerharz, Insbesondere das Material der O-Ringe sind FEP-beschichtete Fluorkautschuke mit ausgezeichneter chemischer Beständigkeit und ohne Gummi-Elution.
- Zum Anschluss an einen Stecker einfach die Buchse aufstecken. Das Trennen erfolgt per einfachem und einhändigem Knopfdruck.
- Der einzigartige "Doppelverriegelungsmechanismus" verhindert ein versehentliches Trennen von Buchse und Stecker.
- Der verzweigte Rohranschluss verbessert die Funktionsfähigkeit und reduziert den Platzbedarf der Rohrleitungen.
- Die Stecker werden mit einer Staubschutzkappe geliefert.
- Alle Komponenten werden gereinigt, montiert, geprüft und anschließend in einem Reinraum verpackt.

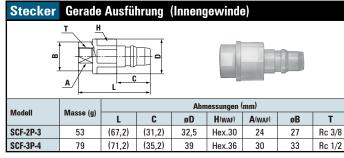

Technische Daten Gehäusewerkstoff Fluoropolymer resin (PFA) Gewinde 3/8", 1/2" / M26, M32 Größe Rohrsteckdorn ø6 x ø8, ø8 x ø10 Druckeinheit kaf/cm² Betriebsdruck 0,2 ıngsmateria 0-Ring Dichtungsmaterial er Buchs +5 °C bis +50 °C Standardmaterial Fluoropolymer resin (PFA)

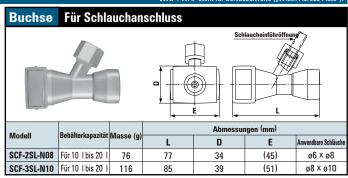
Austauschbarkeit


Modellnamen {SCF- \square S (P)} mit der gleichen Ziffer in \square sind unabhängig von der Endkonfiguration untereinander austauschbar

Min. Querschnittsfläche (mm						
Modell	SCF-2SP	SCF-3SP				
Min. Querschnittsfläche	23,8	44,2				

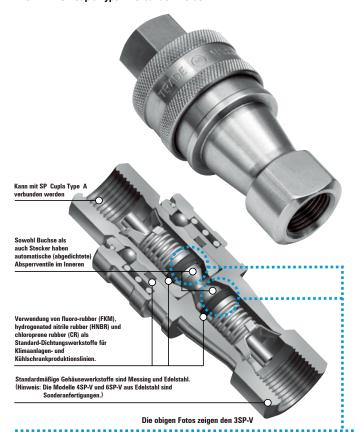

Volumenstrom - Druckverlustcharakteristik




Die Gewindeabmessungen der Behälterseite für den Stecker.



Modelle und Abmessungen



Für Inertgas und Vakuum **SP-V Cupla** Für Vakuum

Automatische Absperrventile in Buchse und Stecker für Vakuumanwendungen. Jedes Ventil kann einem Vakuum von bis zu 1,3 x 10⁻¹ Pa standhalten, auch wenn es nicht angeschlossen ist.

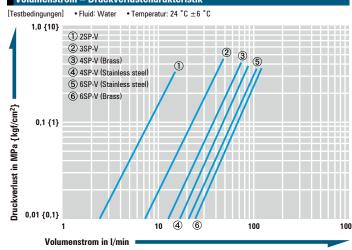
- Verwendet automatische Absperrventile mit extrem hoher Abdichtung in Buchse und Stecker. Ideal für Vakuumanwendungen.
- Automatische Absperrventile in Buchse und Stecker erleichtern die Handhabung des Fluids. Geeignet für eine breite Palette an Vakuumanwendungen bis zu 1,3 x 10-1 Pa {1 x 10-3 mmHg} auch im getrennten Zustand.
- Drei Arten von Dichtungsmaterialien stehen für die unterschiedlichsten Produktionslinien von Klimaanlagen, Kühlschränken oder ähnlichen Geräten zur Verfügung.
- Kann mit SP Cupla Type A verbunden werden.

Technische Daten							
Gehäusewerkstoff		Bra (Standard		Stainless steel (Standardmaterial)	Stainless steel (Sonderanfertigung)		
Größe (Gewinde)		1/4", 3/8"	1/2", 3/4"	1/4", 3/8"	1/2", 3/4"		
	MPa	5,0 3,0		7,5	4,5		
Betriehsdruck kgf/cm ²		51	31	76	46		
Bar		50	30	75	45		
	PSI	725	435	1090	653		
		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke		
Betriebstemperaturbereich des Dichtungsmaterials		Chloroprene rubber	CR (C308)	-20 °C bis +80 °C	Standardmaterial		
		Fluoro rubber	FKM (X-100)	-20 °C bis +180 °C	Standardmaterial		
		Hydrogenated nitrile rubber	HNBR (H708)	-20 °C bis +120 °C	Standardmaterial		

Der O-Ring der Buchse für HNBR-Dichtwerkstoffprodukte wird beim Versand nicht geschmiert.

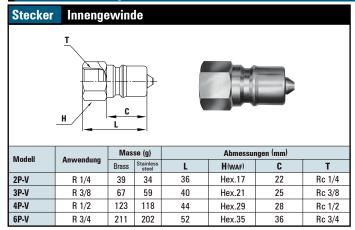
Max. Anzugsdrehmoment Nm {kgf⋅cm}							
Größe (Gewi	nde)	1/4"	3/8"	1/2"	3/4"		
Drehmoment	Messing	9 {92}	12 {122}	30 {306}	50 {510}		
Dreiiiioiiieiit	Edelstahl	14 {143}	22 {224}	60 {612}	90 {918}		

Strömungsrichtung
Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.


Buchse und Stecker unterschiedlicher Größe können nicht miteinander verbunden werden. Auswechselbar mit SP Cupla Type A, jedoch unter Beachtung der Volumenstromreduzierung.

Min. Querschnittsfläche				(mm²)
Modell	2SP-V	3SP-V	4SP-V	6SP-V
Min. Querschnittsfläche	18	38	71	110

Eignung für Vakuum	1,3 × 10 ⁻¹ Pa {1 × 10 ⁻³ mmHg}					
nur Buchse	nur Stecker	Bei Anschluss				
betriebsbereit	betriebsbereit	betriebsbereit				


Beimischung von Luft beim Anschluss Kann je nach Einsatzbedingungen variieren. (ml)							
Modell	2SP-V	3SP-V	4SP-V	6SP-V			
Luftvolumen	1,0	2,4	3,2	10,5			

Volumenstrom – Druckverlustcharakteristik

Zur Stabilisierung der Ventilbewegung ist eine einzigartige gerade Führung integriert.

Modelle und Abmessungen

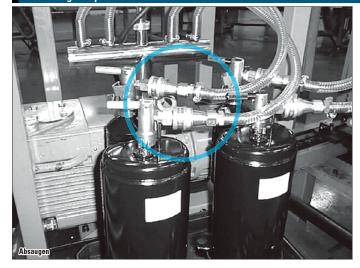
Buchse Innengewinde Masse (g) Abmessungen (mm) Modell Brass øD H(WAF) Т 2S-V R 1/4 136 127 58 (28) Rc 1/4 3S-V R 3/8 217 197 65 (35) 21 Rc 3/8 4S-V R 1/2 421 393 72 45 29 Rc 1/2 6S-V R 3/4 709 658 88 55 35 Rc 3/4

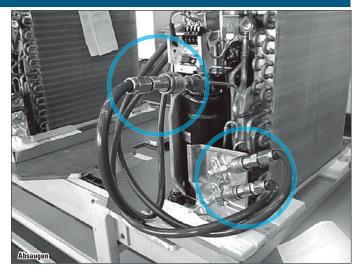
• Die Hülsenform des 4S-V und des 6S-V unterscheidet sich von der des obigen Bildes.

Dichtungsmaterialien für Kältemitte

Verschiedene umweltfreundliche Kältemittel für Klimaanlagen und Kühlschränke wurden entwickelt. Nitto Kohki hat jahrelang in die Forschung und Entwicklung exzellenter Dichtungsmaterialien für Kältemittel und Kältemittelöle investiert und schon früh versucht, Dichtungsmaterialien für diese umweltfreundlichen Kältemittel zu entwickeln und herzustellen.

	Dichtung	gsmaterial					
	Hydrogenated nitrile rubber	Chloroprene rubber					
Kennzeichnung	HNBR (H708)	CR (C308)					
Eigenschaften	Beständig gegen Fluorkohlenwasserstoffe (HFC-134a, HFC-407C, HFC-410A, HFC-404A) und Öle vom Typ PAG und Ester. Außerdem hitzebeständig bis 120 °C	Hervorragende Beständigkeit gegen Fluorkohlenwasserstoffe (H-FCKW-22 und HFC-134a)					
Anwendung	Produktionslinien für Kühlschränke Produktionslinien für Klimaanlagen	Produktionslinien für Klimaanlagen					


Vergleich des äußeren Erscheinungsbilds


Wenn zwei verschiedene Gase gleichzeitig in den Produktionslinien verwendet werden, können der SP-V-GN-Typ und der SP-V-GNN-Typ (nicht austauschbar mit dem Standard-SP-V-Typ und untereinander) erforderlich sein, um fehlerhafte Verbindungen zu falschen Leitungen zu vermeiden. Sie sind Sonderanfertigungen. Für Details wenden Sie sich bitte direkt an Nitto Kohki oder seinen Vertriebspartner in Ihrem Land.

	Buchse	Stecker
SP-V Cupla	× ×	OK X
SP-V-GN Cupla	eine Nut ×	X eine Nut
SP-V-GNN Cupla	x zwei Nuten	zwei Nuten

X deutet auf Inkompatibilität hin.

Anwendungsbeispi



Für Inertgas und Vakuum **PCV Pipe Cupla Zum Anschluss an Kupferrohre**

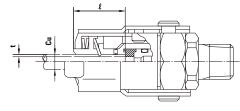
Wird direkt auf gerade Kupferrohre geklemmt!

Die Doppeldichtungskonstruktion hält einem Vakuum von bis zu 1,3 x 10⁻¹ Pa stand.

- Wird direkt auf ein gerades Kupferrohr geklemmt, wodurch unnötiges Schweißen oder Bördeln vermieden wird.
- Hält (im angeschlossenen Zustand) einem Vakuum von bis zu 1,3 x 10-1 Pa stand, was den Einsatz in der Dichtheitsprüfung, Vakuumansaugung und Kältemittelfüllung ermöglicht.
- Wählen Sie aus drei Standardtypen von Dichtungsmaterialien, die mit Fluids für die Produktion von Klimaanlagen und Kühlschränken verwendet werden. Viele Modelle für verschiedene Rohrgrößen.
- Mit einer Hebelbetätigung wird das Rohr gleichzeitig gespannt und abgedichtet. Die doppelte Dichtungskonstruktion für festen Sitz an der Stirn- und Außenseite des Rohres gewährleistet eine hervorragende Abdichtung und Vakuumbeständigkeit.

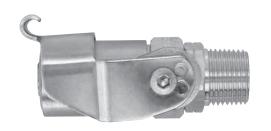
Technische Daten												
Modell	PCV400	PCV470	PCV	500	PCV600	PCV630	PCV800	PCV950	PCV1	1000	PCV1270	PCV1590
Kupferrohr-AD	ø4,0	ø4,76 (3/16")	ø5,0		ø6,0	ø6,35 (1/4")	ø8,0 (5/16")	ø9,52 (3/8")	ø10,0		Ø12,7 (1/2")	ø15,88 (5/8")
Gehäusewerkstoff	Messing											
Druckeinheit	MPa				kgf/cr	n²	Bar			PSI		
Betriebsdruck	4,5			46		45			653			
	Dichtur	Dichtungsmaterial Kennzeichnung				Betriebsten	peraturbe	eich		Verme	rke	
Dichtungsmaterial		prene rubber		CR (C308)		08)	-20 °C bis +80 °C		°C	Standardmaterial		
Betriebstemperaturbereich	Fluor	o rubbe	ıbber F		KM (X-	100)	-20 °C b	is +180	°C	Sta	ndardn	naterial
	Hydro nitril	ogenated le rubber	enated rubber H		NBR (F	1708)	-20 °C bis +120 °C		°C	Standardmateria		naterial

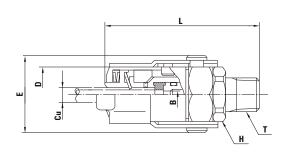
Hydrogenated nitrile rubber (HNBR) ist zur besseren Erkennung blau eingefärbt.


Max. Anzugsdrehmoment Nm {kgf·cn					
Größe (Gewinde)	1/4"	3/8"			
Drehmoment	9 {92}	12 {122}			

Strömungsrichtung
Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.
4

Min. Querschnittsfläche (mm²)								
Modell	PCV400	PCV470	PCV500	PCV600	PCV630	PCV800		
Min. Querschnittsfläche	3,8	3,8	3,8	9,1	9,1	16,6		
Modell	PCV950	PCV1000	PCV1270-2	PCV1270-3	PCV1590-2	PCV1590-3		
Min. Querschnittsfläche	16,6	16,6	50,3	73,9	50,3	78,5		


Eignung für Vakuum	1,3 x 10 ⁻¹ Pa {1 x 10 ⁻³ mmHg}
nur Cupla	Bei Anschluss an eine Rohrleitung
_	betriebsbereit


Rohraußendurchmesser, Rohreinbaulänge in den Cupla und Mindestdicke der Rohrwandung

	Die mit einem Sternchen (*) gekennzeichneten Artikei sind Sonderanfertigungen.						
Produktgruppe Rohr-AD (Cu)		Rohreinbaulänge in den Cupla (ℓ)	Mindestdicke der Rohrwandung (t)				
PCV400*	ø4,0						
PCV470	ø4,76 (3/16")						
PCV500*	ø5,0	19	0,8 oder mehr				
PCV600	ø6,0						
PCV630	ø6,35 (1/4")						
PCV800	ø8,0 (5/16")						
PCV950	ø9,52 (3/8")	20,5					
PCV1000*	ø10,0						
PCV1270	ø12,7 (1/2")	30	1.0 odor mohr				
PCV1590	ø15,88 (5/8")	30	1,0 oder mehr				

Modelle und Abmessungen

B 114	D 1 4D (C)						Abmes	sungen (mm)		
Produktgruppe	Rohr-AD (Cu)	Modell	Anwendung	Masse (g)	L	øD	H(WAF)	øB	E	Т
PCV400 *	-4.0	PCV400-2	Rc 1/4	155	(59)	22.2	Hex.17	2.2	(32,5)	R 1/4
	ø4,0	PCV400-3	Rc 3/8	155	(60)	22,2	Hex.19	2,2		R 3/8
	4.70	PCV470-2	Rc 1/4	155	(60)		Hex.17	2,2		R 1/4
PCV470	ø4,76 (3/16)	PCV470-3	Rc 3/8	160	(61)	22,2	Hex.19	2,2	(32,5)	R 3/8
	12,12,	PCV470-0	Blindstecker	160	(47)		-	-		-
PCV500 *	ø5,0	PCV500-2	Rc 1/4	155	(59)	22,2	Hex.17	2.2	(32,5)	R 1/4
PCV500 "	Ø5,0	PCV500-3	Rc 3/8	155	(60)	22,2	Hex.19	2,2	(32,5)	R 3/8
		PCV600-2	Rc 1/4	150	(60)		Hex.17	2.4		R 1/4
PCV600	ø6,0	PCV600-3	Rc 3/8	155	(61)	22,2	Hex.19	3,4	(32,5)	R 3/8
		PCV600-0	Blindstecker	155	(47)		_	-		_
	ø6,35 (1/4)	PCV630-2	Rc 1/4	145	(60)	22,2	Hex.17		(32,5)	R 1/4
PCV630		PCV630-3	Rc 3/8	150	(61)		Hex.19	3,4		R 3/8
		PCV630-0	Blindstecker	150	(47)		-	-		-
		PCV800-2	Rc 1/4	175	(62)	24,8	Hex.17	4.6		R 1/4
PCV800	ø8,0 (5/16)	PCV800-3	Rc 3/8	180	(63)		Hex.19	4,6	(35,5)	R 3/8
	(3/10)	PCV800-0	Blindstecker	185	(50)		-	-		_
		PCV950-2	Rc 1/4	175	(62)	Hex.17 24,8 Hex.19	Hex.17	4.0		R 1/4
PCV950	ø9,52 (3/8)	PCV950-3	Rc 3/8	180	(63)		4,6	(35,5)	R 3/8	
	(0,0)	PCV950-0	Blindstecker	180	(50)		-	-	1	-
D01/4000 #	10.0	PCV1000-2	Rc 1/4	155	(62)	04.0	Hex.17	4.0	()	R 1/4
PCV1000 *	ø10,0	PCV1000-3	Rc 3/8	155	(63)	24,8	Hex.19	4,6	(35,5)	R 3/8
		PCV1270-2	Rc 1/4	470	(80)		Hex.24	8,0		R 1/4
PCV1270	ø12,7 (1/2)	PCV1270-3	Rc 3/8	465	(81)	34,8	Hex.24	9,7	(45,0)	R 3/8
	(1/2/	PCV1270-0	Blindstecker	475	(68)	1	-	-	,-,	_
		PCV1590-2	Rc 1/4	424	(80)		Hex.24	8,0		R 1/4
PCV1590	ø15,88 (5/8)	PCV1590-3	Rc 3/8	435	(81)	34,8	Hex.24	10,0	(45,0)	R 3/8
	13/8)	PCV1590-0	Blindstecker	445	(68)		-	_	1	_

- Für die Masse mit Stecker Folgendes hinzufügen (Messinggehäuse) 2P-V: 39 g, 3P-V: 67 g, (Edelstahlgehäuse) 2P-V: 34 g oder 3P-V: 59 g
- * Auf Anfrage erhältlich

Klemmmechanismus

Vor dem Anklemmen Nach dem Anklemmen Hebel

Wenn der Hebel nach unten gedrückt wird, bewegt sich die Hülse in Pfeilrichtung und betätigt gleichzeitig die Spannzangen, um das Kupferrohr fest zu greifen und dicht zu verschließen.

Anwendungsbeispiel

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleirfaden" und das den Produkten beiliegende "Anleitungsblatt" durch.

Für Lack

Paint Cupla

Rohrleitungen für Lackieranlagen

Ein schnelles An- und Abkuppeln von Lackierpistole und Lackierflüssigkeitsleitung wird realisiert.

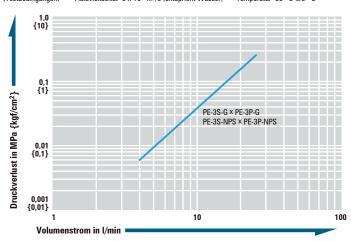
- Ein einzigartiges Schwenkverbindungssystem ermöglicht einfaches An- und Abkuppeln von Lackierpistole und Lackierschlauch auch mit Handschuhen.
- Der voll geöffnete Absperrschieber verhindert Lackablagerungen.
- Die Verwendung einer speziellen Harzversiegelung, die lösungsmittelbeständig ist, hat eine lange Lebensdauer, eine hohe Stabilität und eine einfache Reinigung der Lackierpistole nach der Arbeit ermöglicht.
- Das An- und Abkuppeln kann auch dann erfolgen, wenn Lack an der Hülse klebt.
- Die kleine und leichte Bauweise (80 g pro Set) reduziert das Gewicht, das von Hand gehalten werden muss.
- Ein integrierter Hülsenverriegelungsmechanismus verhindert ein unbeabsichtigtes Lösen des Cuplas und gewährleistet so einen sicheren Betrieb.

Strömungsrichtung

Technische Daten Gehäusewerkstoff Buchse: Aluminum allov Stecker: Stainless steel Größe (Gewinde) 3/8" 3/8NPS Druckeinheit kaf/cm Betriebsdruck 1.0 10 145 Betriebstemperaturbereich des Dichtungsmaterials Fluoro-resin 0 °C bis +50 °C Standardmaterial

Anzugsdrehmomentber	eich	Nm {kgf·cm}
Drehmoment	15 {153}	

Austauschbarkeit


Lediglich Paint Cuplas gleicher Größe können miteinander verbunden werden.

Eignung für Vakuum

Nicht geeignet für Vakuumanwendungen im angeschlossenen oder nicht angeschlossenen Zustand.

Volumenstrom – Druckverlustcharakteristik

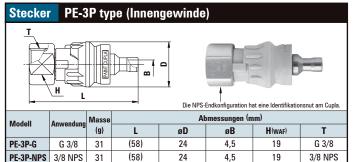
• Fluidviskosität: 8 x 16^{-7} m²/s (entspricht Wasser) • Temperatur: 30 °C ± 5 °C

Verbinden und Trennen

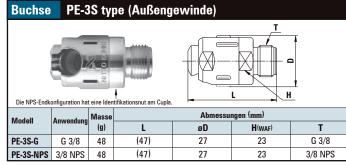
Verbindung

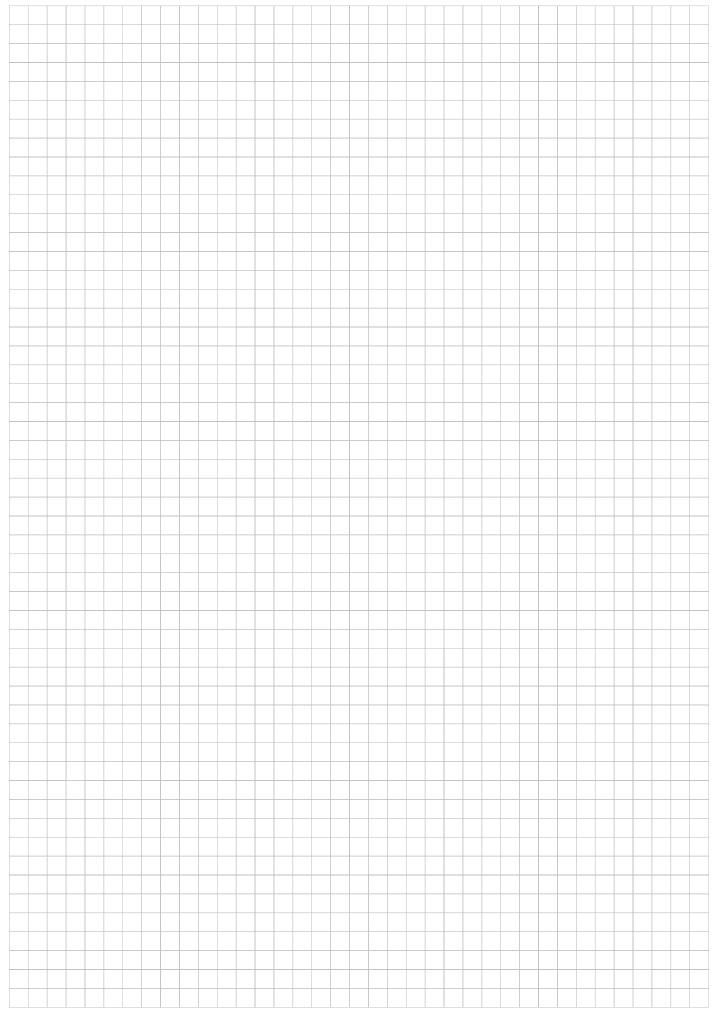
Die Passfeder an der Steckerabdeckungauf den Schlitz ı der Hülse ausrichten.dann den Stecker beim Ziehen an der Buchsenhülse bis zum Anschlag

Halten Sie den Stecker in der Buchse eingesteckt, und neiger Sie den Stecker so, dass er mit der Buchse fluchtet. Die Verriegelung erfolgt durch D



vollständig über den schmalen Teil des Buchsenkörpers.


Trennung der Verbindung


Trennen Sie die Verbindung in umgekehrter Reihenfolge des Verbindens.

Modelle und Abmessungen

WAF : WAF steht für Schlüsselweite ("Width Across Flats").

Für Lebensmittel **Hygienic Cupla Easy Wash-Typ** Typ für Demontage und Abwaschen / für Rohrleitungen in der Lebensmittelindustrie

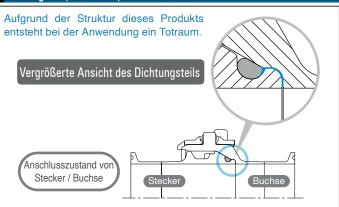
Löst die Probleme von Flanschverbindungen durch die mühelose Bedienung, die nur bei Cuplas möglich ist. Einfache Demontage und Reinigungsfähigkeit helfen beim Hygienemanagement von HACCP.

- Der Anschluss erfolgt durch einfaches Einstecken des Steckers in die Buchse und Verdrehen der "Sicherheitsverriegelung".
- Die "Sicherheitsverriegelung" verhindert ein unbeabsichtigtes Lösen der Kupplung.
- Es werden O-Ringe eingesetzt, die dem japanischen Lebensmittelgesetz entsprechen.
- Bedienerfreundliches Design. Anders als bei herkömmlichen Rohrleitungsverbindungsstücken fallen Dichtungsteile beim Anschluss nicht ab.

Technische Daten							
Gehäusewerkstoff	Stainless s	teel [SCS16 (J	IS SUS316L equiv	alent)] *1			
Oberflächengüte des flüssigkeitsberührten Teils		Polierte Obe	rfläche #400				
Größe der Endkonfigurationen	Anschwe	iß-Typ *2	Flansch	n-Typ *3			
Grobe der Eliukollingurationen		1,5 S / 2,0 S					
Druckeinheit	MPa	kgf/cm²	Bar	PSI			
Betriebsdruck	1,0	10	10	145			
	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Dichtwerkstoff *4	Silicone rubber	SI	0 °C bis +110 °C	Standardmaterial			
Betriebstemperaturbereich	Fluoro rubber	FKM (X-100)	0 °C bis +180 °C	auf Anfrage erhältlich			
	Ethylene-propylene rubber	EPDM (EPT)	0 °C bis +150 °C	auf Anfrage erhältlich			
O-Ring-Größe	1,5 S: P38, 2,0 S: P50 (Abmessungen, Toleranz: siehe JIS B 2401, Härte: A70±5)						

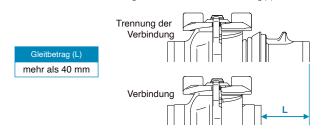
- 1: Alle Metallteile sind gleichwertig mit SUS304, mit Ausnahme derjenigen, die einem Flüssigkeitskontakt ausgesetzt sind.
- *2: Die Abmessungen der Schweißzone entsprechen dem Edelstahl-Sanitärrohr gemäß JIS G 3447.
 *3: Bitte verwenden Sie Flanschverbinderkupplungen nach IDF / ISO 2852.

Strömungsrichtung



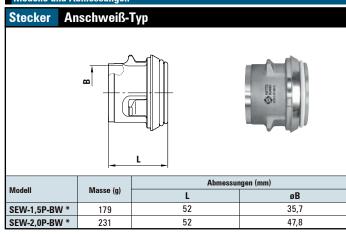
Buchsen und Stecker gleicher Größe sind unabhängig von ihrer Endkonfiguration austauschbar.

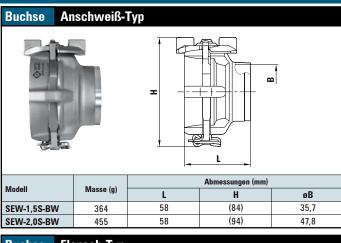
Eignung für Vakuum		Vakuumdruck: 53 kPa A
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit

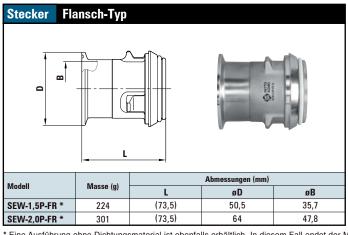

Die Vakuumleistung kann je nach Betriebsumgebung und Einsatzbedingungen variieren.

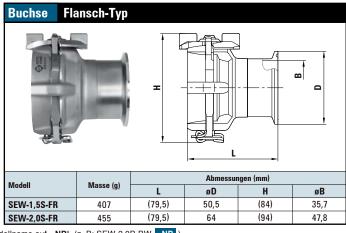
Dichtungsteil (Querschnitt)

Bei der Montage des Cuplas auf dem Rohr


Das Verbinden und Trennen von Buchse und Stecker wird durch Verschieben der Buchse oder des Steckers zur Mittelachse des Rohrs ermöglicht. Beim Anschluss der Kupplungen an das Rohr ist darauf zu achten, dass in axialer Richtung mindestens ein minimaler Verfahrweg (L) vorhanden ist.




HACCP: Hazard Analysis and Critical Control Points (Gefahrenanalyse und kritische Kontrollpunkte)


HACCP ist ein Managementsystem, in dem die Lebensmittelsicherheit bei der Produktion über die Beschaffung und Handhabung der Rohstoffe bis hin zum Vertrieb und Verbrauch der Fertigprodukte durch die Analyse und Kontrolle biologischer, chemischer und physikalischer Gefahren berücksichtigt wird.

^{*4:} Das Dichtungsmaterial entspricht Artikel Nr. 3-D-3-(1) Gummi-Utensilien (außer Pflegeutensilien) oder Behälter/Packungen. Es hat sowohl Material- als auch Flutionstests bestanden, die im Gesetz für Lebensmittelhygiene und den Normen für Lebensmittel und Lebensmittelzusatzstoffe (Mitteilung Nr. 370 von 1959, herausgegeb japanischen Ministerium für Gesundheit) festgelegt sind. Entspricht der Norm Nr. 21CFR 177.2600 der US-amerikanischen Food and Drug Administration (FDA).

Eine Ausführung ohne Dichtungsmaterial ist ebenfalls erhältlich. In diesem Fall endet der Modellname auf "-NP". (z. B: SEW-2,0P-BW -NP

Einfache Montage und Demontage

Kein Werkzeug zum Zerlegen/Montieren des Hygienic CUPLA erforderlich. Geringe Anzahl von Teilen, die einfach zu handhaben sind und so eine effiziente Wartung ermöglichen.

Einfaches Reinigen der gesamten Anlage

Nach der Demontage erfordert die geringe Anzahl von Bauteilen nur einen minimalen Aufwand bei der Reinigung. Es können keine Kleinteile verloren gehen.

Sicherheitsverriegelungsfunktion

Als Sicherheitsmaßnahme sorgt die "Sicherheitsverriegelung" dafür, dass es zu keiner unbeabsichtigten Trennung des Cuplas kommen kann. Durch Drehen des Nockenhebels können Sie den angeschlossenen Zustand von Buchse und Stecker beibehalten.

Bau- und Sicherheitsstandards

Da der O-Ring vorher angebracht wird, fällt er beim Anschluss nicht ab wie herkömmliche Dichtungsteile. Außerdem entspricht das Dichtungsmaterial Artikel Nr. 3-D-3-(1) Gummi-Utensilien (außer Pflegeutensilien) oder Behälter/Packungen. Es hat sowohl Material- als auch Elutionstests bestanden, die im Gesetz für Lebensmittelhygiene und den Normen für Lebensmittel und Lebensmittelzusatzstoffe (Mitteilung Nr. 370 von 1959, herausgegeben vom japanischen Ministerium für Gesundheit) festgelegt sind. Entspricht darüber hinaus der Norm Nr. 21CFR 177.2600 der US-amerikanischen Food and Drug Administration (FDA).

Zubehör

Dust Cap Dust cap für Stecker und Buchse (aus Polyethylen).

Verhindert die Kontamination durch Fremdkörper in Rohrleitungen, während diese gerade getrennt werden.

Die Dust Cap entspricht der Norm Nr. 3-D-2-(1) und 3-D-2-(2)-4 für Geräte und Behälter. Sie hat sowohl Material- als auch Elutionstests bestanden, die in den Normen für Lebensmittel und Lebensmittelzusatzstoffe festgelegt sind. (Überarbeitete Mitteilung Nr. 201 vom 31. März 2006 durch das japanische Ministerium für Gesundheit)

Verbrauchsmaterial

Der O-Ring und die Lock plate ASSY sind Verschleißteile. Bezüglich des Austauschs der Lock plate ASSY siehe folgende Liste.

Anleitung für den Austausch

Auszutauschende Teile	Anzahl der Verbindungen und Trennungen
Lock plate ASSY	1000-mal

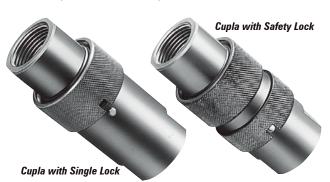
Lock plate ASSY

- Wenn die Lock plate ASSY deformiert ist, ersetzen Sie sie unabhängig von der Anzahl der Verbindungen und Trennungen durch eine neue.
- Die Lebensdauer des O-Rings hängt von der Betriebsumgebung und den Bedingungen (Druck und Temperatur usw.) ab.

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende "Anleitungsblatt" durch.

Index

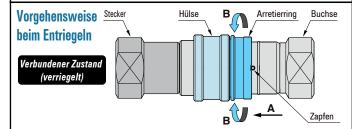
	Produktname	Seite
С	Cupla with Safety Lock	137
	Cupla with Single Lock	137
H	High flow Cupla	139
	High flow Cupla BI	140
Р	Plastic Cupla BC Type	141
	Plastic Cupla BCC Type	141
T	TSP-HP Cupla for High Pressure	138
	Two-way Shut-off Type Small Size Cuplas	138


Cupla with Single Lock Cupla with Safety Lock

Mechanismus zur Verhinderung unbeabsichtigter Trennungen

Die unten rechts aufgeführten Standard-Cuplas können mit einem zusätzlichen Einzelverschluss oder einem Sicherheitsverschluss gegen unbeabsichtigtes Entkuppeln ausgestattet werden.

- Cupla with Single Lock
- Die Hülse ist mit einem Ausschnitt versehen und der Buchsenkörper hat einen vorstehenden Sicherungsstift oder eine Kugel. Nach dem Anschließen der Cuplas drehen Sie einfach die Hülse, um die Hin- und Herbewegung der Hülse zu verriegeln.
- Cupla with Safety Lock


Hinter der Hülse befindet sich ein Hülsenstopper-Arretierring. Nach dem Anschließen der Cuplas einfach den Arretierring drehen, um die Hin- und Herbewegung der Hülse zu deaktivieren (siehe Skizze rechts oben).

Bedienung der Sicherheitsverriegelung

Vorgehensweise Stecke beim Verriegeln . Verbundener Zustand (vor dem Verriegeln) Zapfen

Schieben Sie den Arretierring in Richtung des Pfeils A und drehen Sie ihn gleichzeitig in beide Richtungen. Wenn der Stopper mit dem flachen Ausschnitt am Arretierring ausgerichtet ist, wird der Cupla verriegelt.

Schieben Sie den Arretierring in Richtung des Pfeils A und drehen Sie ihn gleichzeitig in beide Richtungen. Wenn der Stopper mit dem tieferen Ausschnitt am Arretierring ausgerichtet ist, wird der Cupla entriegelt.

Cuplas with Single Lock

Hi Cupla (Messing)/Mold Cupla/SP Cupla Type A/TSP Cupla/HSP Cupla/210 Cupla

* Die obigen Cuplas mit Sicherheitsverschluss werden alle auf Bestellung gefertigt.

Die folgenden Cuplas sind serienmäßig mit einem Einzelverschluss ausgestattet. Hi Cupla BL/Lock Cupla 200/HSU Cupla/350 Cupla/Flat Face Cupla F35/ Flat Face Cupla FF/450B Cupla

Cuplas with Safety Lock

SP Cupla Type A/TSP Cupla/HSP Cupla/210 Cupla/350 Cupla

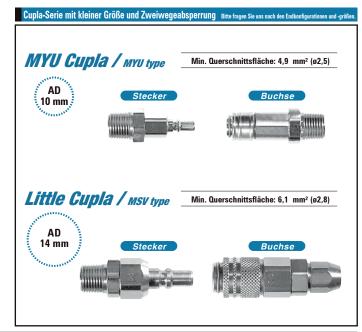
*Die obigen Cuplas mit Sicherheitsverschluss werden alle auf Bestellung gefertigt.

Die folgenden Cuplas sind serienmäßig mit einem Sicherheitsverschluss ausgestattet.

Hot Water Cupla/S210 Cupla

Two-way Shut-off Type Small Size Cuplas

Für Temperaturregler



- Push-to-connect-Verfahren.
- Sowohl die Buchse als auch der Stecker sind mit automatischen Absperrventilen ausgestattet, um das Austreten von Fluids beim Trennen zu verhindern.
- Einfacher Anschluss auch bei beengten Platzverhältnissen.
- Die leichtgewichtige Funktionsweise ermöglicht Ihnen eine einfache Konstruktion bei Mehrfachverrohrung.

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende "Anleitungsblatt" durch.

Technische Da	aten					
0.111		MYU	Cupla	Little Cupla		
Gehäusewerkstoff		Stainless steel, B	rass (Nickel plated)	Stainle	ss steel	
Größe (Gewinde)			Bitte wenden	Sie sich an uns.		
MPa		1,0		1,5		
Betriehsdruck	kgf/cm ²	10		15		
201101101111011	Bar	1	0	15		
	PSI	14	1 5	218		
		Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke	
Dichtungsmaterial Betriebstemperaturbereich		Nitrile rubber	NBR (SG)	-20 °C bis +80 °C		
		Ethylene-propylene rubber	EPDM (EPT)	-40 °C bis +150 °C	auf Anfrage erhältlich	
		Fluoro rubber	FKM (X-100)	-20 °C bis +180 °C		

WAF : W

- Geeignet für Hochdruckwasserleitungen wie z. B. in Hochdruckreinigern oder Autowaschanlagen.
- Die ventillose Ausführung sorgt für einen hohen Volumenstrom.

Technische Daten							
Gehäusewerkstoff		Ede	Istahl				
Größe (Gewinde)		1/4", 3/8", 1/2"					
Druckeinheit	MPa	kgf/cm ²	Bar	PSI			
Betriebsdruck	9,0	92	90	1310			
Diahtummomotonial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Dichtungsmaterial Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +80 °C	auf Anfrage erhältlich			
•	Ethylene-propylene rubber	EPDM (EPT)	-40 °C bis +150 °C	aui Ailiage elliailiici			

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende

TPF type (Innengewinde)

Modelle und Abmessungen

NA - 1 - 11	Anusanduna	Abmessungen (mm)					
Modell	odell Anwendung		H(WAF)	C	T	øB	
2TPF-HP	R 1/4	34	Hex.17	18	Rc 1/4	6,5	
3TPF-HP	R 3/8	38	Hex.21	21	Rc 3/8	10	
4TPF-HP	R 1/2	47,5	Hex.29	26,5	Rc 1/2	13	

AF steht für Schlüsselweite ("Width Across Flats").							
Buchse TSF type (Innengewinde)							
THE STATE OF THE S							
T							
L H Abmessungen (mm)							
Modell	Anwendung	L	øD	H(WAF)	т		
2TSF-HP	R 1/4	32	24	Hex.19	Rc 1/4		
3TSF-HP	R 3/8	35	28	Hex.23	Rc 3/8		
4TSF-HP	R 1/2	44,5	35	Hex.29	Rc 1/2		

Stecke	r TPI	M ty	oe (Ai	ußen	gewi	nde)				
<u>α</u>	Ţ		. C	-						
Modell	Modell Anwendung Abmessungen (mm)									
iviouell	All Hollully	L	H(WAF)	C	T	øΒ				
2TPM-HP	Rc 1/4	38	Hex.17	18	R 1/4	6,5				

3TPM-HP Rc 3/8 43 Hex.19 21 R 3/8 10

⚠ Vorsichtsmaßnahmen für den Gebrauch

⚠ Warnung Nicht mit Standard TSP Cupla (Seite 71 bis 74) verbinden.

High Flow Cupla

Für Mitteldruck

Drastische Erhöhung des Volumenstroms bei gleichzeitiger Minimierung des Druckabfalls.

- Sowohl Buchse als auch Stecker haben integrierte automatische Absperrventile.
- Typ mit hohem Volumenstrom zur Erhöhung der Kühlwirkung.
- Schnelles An- und Abkuppeln von Kühlleitungen.
- Kompakte und platzsparende Bauweise. Gegenüber der gekoppelten Länge des SP Cuplas type A ist die Länge des High Flow Cuplas um 22 % reduziert.
- Installation und Wartung können in kurzer Zeit durchgeführt werden.

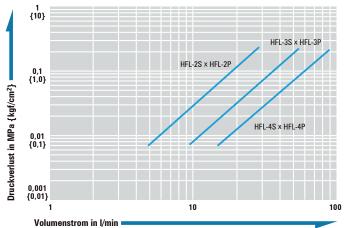
Technische Daten								
Gehäusewerkstoff	Stainless steel, Brass							
Größe (Gewinde)	1/4", 3/8", 1/2"							
Druckeinheit	MPa	MPa kgf/cm²				PSI		
Betriebsdruck	1,0		10	10		145		
Diehtuunemeterial	Dichtungsmaterial		Kennzeichnung		Betrie	bstemperaturbereich		
Dichtungsmaterial Betriebstemperaturbereich	Ethylene-propyler rubber	ne	EP	DM -40		°C bis +150 °C		
•	Fluoro rubber		FKM		-20	°C bis +180 °C		

Das standardmäßige Dichtungsmaterial für das Messinggehäuse ist Fluorkautschuk.

Max. Anz	ugsdreh	moment		Nm {kgf·cm}
Modell		HFL-2P / HFL-2S	HFL-3P / HFL-3S	HFL-4P / HFL-4S
	Stainless steel	14 {143}	22 {224}	60 {612}
Drehmoment	Brass	9 {92}	12 {122}	30 {306}

Strömungsrichtung

Der Fluidstrom kann bidirektional sein, wenn Buchse und Stecker verbunden sind.


Buchsen und Stecker verschiedener Größen können nicht miteinander verbunden werden.

Min. Querschnittsfläche (mm					
Modell	HFL-2P / HFL-2S	HFL-3P / HFL-3S	HFL-4P / HFL-4S		
Min. Querschnittsfläche	32	53	91		

Eignung für Vakuum	1,3	x 10 ⁻¹ Pa {1 x 10 ⁻³ mmHg}
nur Buchse	nur Stecker	Bei Anschluss
_	_	hetriehshereit

Volumenstrom – Druckverlustcharakteristik

[Testbedingungen] • Fluid: Water • Temperatur: 20 °C ±5 °C

Modelle und Abmessungen **Innengewinde**

HFL-4S

Mar dell		Masse (Abmessungen (mm)				
Modell	Anwendung	Brass	Stainless steel	L	C	øD	H(WAF)	T
HFL-2P	R 1/4	31	28	30	16,5	18,5	Hex.17	Rc 1/4
HFL-3P	R 3/8	47	43	31	18	23	Hex.21	Rc 3/8
HFL-4P	R 1/2	91	82	37,5	22,5	32	Hex.29	Rc 1/2

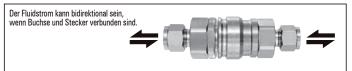
Buchse Innengewinde Masse (g) Abmessungen (mm) Modell Anwendun øD HFL-2S R 1/4 110 99 (47)Rc 1/4 HFL-3S R 3/8 165 150 (49) 32 Rc 3/8 24 HFL-4S R 1/2 231 211 60 35 29 Rc 1/2

WAF: WAF steht für Schlüsselweite ("Width Across Flats").

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende "Anleitungsblatt" durch.

High Flow Cupla BI Type

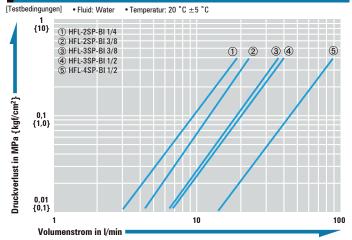
pla mit Klemmring-Flansch für die Verrohrung von Wasser und Fluids zur Temperaturregelung


High Flow Cupla und Klemmring-Flansch werden kombiniert, um eine effiziente Verrohrung zu erreichen.

- Einfacher Anschluss an ein Edelstahlrohr.
- Der Anschluss an einen Kunststoffschlauch ist mit dem optionalen Schlauchanschlussset möglich.
- Der Anschluss an verschiedene Schläuche ist auch über entsprechende optionale Einsätze möglich.

Technische Daten Gehäusewerkstoff Stainless steel Geeignete Rohrgrößen 1/4", 3/8", 1/2" (Schlauch- und Rohrgrößen siehe unten.) Druckeinheit MPa kgf/cm² Bar Betriebsdruck 1,0 10 145 Kennzeichnung Dichtungsmaterial Dichtungsmaterial Ethylene-propylene rubber **EPDM** -40 °C bis +150 °C Standardmaterial Betriebstemperaturbereich Fluoro rubber FKM -20 °C bis +180 °C Sonderanfertigung

Strömungsrichtung

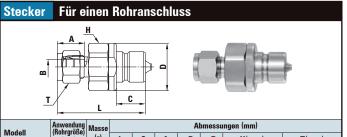


Austauschbarkeit

Verschiedene Größen können nicht miteinander verbunden werden.

Eignung für Vakuum	1,3	< 10 ⁻¹ Pa {1 × 10 ⁻³ mmHg}
nur Buchse	nur Stecker	Bei Anschluss
_	_	betriebsbereit

Volumenstrom – Druckverlustcharakteristik (bei Anschluss an ein Edelstah



Größen von Edelstahlrohren, Muttern und Einsätzen

	Edelstahlrohr	Schlauchanschlu	Schlauchanschlussmutter (Optional)		Rohranschlusseinsatz (Optional)				
Modell	4								
	Rohr-ø in Zoll (mm)	Modell	Schlauchgröße (ID x AD)	Typ des Einsatzes	Rohrabmessungen (ID x AD)	E (mm)	bmessungen L (mm)	des Einsatze A (mm)	s D (mm)
		-	_	DTI 4-2	ø3.18 x ø6.35	2,3	11.9	6.35	3,18
HFL-2SP-BI 1/4	1/4 (ø6.35)	-	-	DTI 4-2,5	ø3,97 x ø6,35	2,7	11,9	6,35	3,97
HFL-23P-BI 1/4	1/4 (00,35)	_	-	DTI 4-2,75	ø4,32 x ø6,35	2,7	11,9	6,35	4,32
		-	-	DTI 4-3	ø4,76 x ø6,35	3,5	11,9	6,35	4,76
HFL-2SP-BI 3/8	3/8 (ø9,53)	-	-	DTI 6-3	ø4,76 x ø9,53	3,0	14,3	9,53	4,76
HL-Z3F-DI 3/0	3/0 (03,33)	-	-	DTI 6-4	ø6,35 x ø9,53	4,8	14,3	9,53	6,35
HFL-3SP-BI 3/8	3/8 (ø9.53)	-	-	DTI 6-3	ø4,76 x ø9,53	3,0	14,3	9,53	4,76
HLF-391-BI 3/6	3/6 (99,53)	-	-	DTI 6-4	ø6,35 x ø9,53	4,8	14,3	9,53	6,35
UEL 200 DI 1/2		E1-6 × 11	ø6 x ø11	DTI 8-4	ø6,35 x ø12,7	4,8	19,1	12,7	6,35
HFL-33F-BI 1/2		E1-8 × 13,5	ø8 x ø13,5	DTI 8-6	ø9,53 x ø12,7	7,9	19,1	12,7	9,53
HFL-4SP-BI 1/2	1/2 (ø12.7) E1-6	E1-6 × 11	ø6 x ø11	DTI 8-4	ø6,35 x ø12,7	4,8	19,1	12,7	6,35
III L-40F-DI 1/2	1/2 1012,77	E1-8 × 13,5	ø8 x ø13,5	DTI 8-6	ø9,53 x ø12,7	7,9	19,1	12,7	9,53

Hinweis: Das Material des Schlauchs muss aus Nylon, Polyester, Polypropylen oder Teflon sein. Die Mutter für Edelstahlrohre wird standardmäßig mit einem High Flow Cupla geliefert. Wenn ein Schlauch oder Rohr an den Cupla angeschlo: optionale Schlauchanschlussmutter oder ein Rohranschlusseinsatz erforderlich.

Modelle und Abmessungen

Modell	Anwendung (Rohrgröße)	Masse	Abmessungen (mm)						
Iviodeli	(mm) (g)		L	C	Α	øD	øB	H(WAF)	T(WAF)
HFL-2P-BI 1/4	6,35 (1/4")	66	(51,9)	16,5	(15,4)	23	(6,35)	Hex.20,64 (13/16")	Hex.14,29 (9/16")
HFL-2P-BI 3/8	9,53 (3/8")	74	(53,4)	16,5	(17)	23	(9,53)	Hex.20,64 (13/16")	Hex.17,46 (11/16")
HFL-3P-BI 3/8	9,53 (3/8")	109	(54,8)	18	(17)	29,5	(9,53)	Hex.26,99 (1 1/16")	Hex.17,46 (11/16")
HFL-3P-BI 1/2	12,7 (1/2")	134	(59)	18	(23)	29,5	(12,7)	Hex.26,99 (1 1/16")	Hex.22,23 (7/8")
HFL-4P-BI 1/2	12,7 (1/2")	160	(68,7)	22,5	(23)	32	(12,7)	Hex.28,58 (1 1/8")	Hex.22,23 (7/8")

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende "Anleitungsblatt" durch.

Für einen Rohranschluss Abmessungen (mm) Modell L Α øD øΒ H(WAF) T(WAF) HFL-2S-BI 1/4 6.35 (1/4") 97 (54,9) (15,4) 26 (6.35) Hex.20,64 (13/16") Hex.14,29 (9/16") HFL-2S-BI 3/8 9,53 (3/8") 105 (56,5) (17) 26 (9,53) Hex.20.64 (13/16") Hex.17,46 (11/16") HFL-3S-BI 3/8 9,53 (3/8") (60.3) (17) 32 (9.53) Hex.26.99 (1 1/16") Hex.17.46 (11/16") 165

35 (12,7)

(64,6)

233 (73,2) (23)

(23) 32 (12,7)

189

HFL-3S-BI 1/2

HFL-4S-BI 1/2 12,7 (1/2")

12,7 (1/2")

Hex.26,99 (1 1/16")

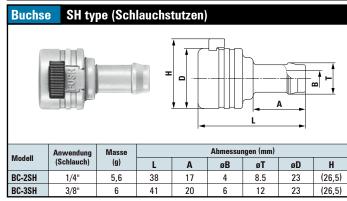
Hex.28,58 (1 1/8")

Hex.22,23 (7/8")

Hex.22,23 (7/8")

Plastic Cupla BC Type Ventillos

Für Niederdruckluftleitungen


- Zum Anschließen einfach den Stecker in die Buchse stecken.
- Der Kunststoff ist ideal für den Einsatz in rostgefährdeter Umgebung.
- · Kompakt und leicht für eine einfache Handhabung.
- Die ventillose Konstruktion sorgt für einen stabileren Volumenstrom.

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende "Anleitungsblatt" durch.

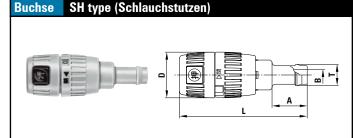
Technische Daten Gehäusewerkstoff Plastic Größe 1/4"-, 3/8"-Schlauch Druckeinheit MPa kgf/cm² PSI Betriebsdruck 0.07 0,7 0,7 10,2 Kennzeich **Dichtungsmaterial** Dichtungsmaterial Betriebstemperaturbereich Nitrile rubber NBR (SG) -20 °C bis +50 °C

Modelle und Abmessungen WAF: WAF steht für Schlüsselweite ("Width Across Flats"). Stecker PH type (Schlauchstutzen) Masse Abmessungen (mm Modell (q) C øD BC-2PH 1/4 41 1,8 19 17 4 8.5 14 BC-3PH 34 19 13 10,9 15

Plastic Cupla BCC Type mit Durchflussregler Für Niederdruckluftleitungen

- Zum Anschließen einfach den Stecker in die Buchse stecken.
- Stecker mit integriertem automatischem Absperrventil.
- Buchse mit praktischem Durchflussregler.
- Der Kunststoff ist ideal für den Einsatz in rostgefährdeten Umgebungen.
- Kompakt und leicht für eine ausgezeichnete Handhabung.

Bitte lesen Sie vor dem Gebrauch unbedingt den am Ende dieses Buchs befindlichen "Sicherheitsleitfaden" und das den Produkten beiliegende



Technische Date

Gehäusewerkstoff	Plastic						
Größe		3/8"-Schlauch					
Druckeinheit	MPa	MPa kgf/cm² Bar PSI					
Betriebsdruck	0,07	0,7	0,7	10,2			
Dichtungsmaterial	Dichtungsmaterial	Kennzeichnung	Betriebstemperaturbereich	Vermerke			
Betriebstemperaturbereich	Nitrile rubber	NBR (SG)	-20 °C bis +50 °C	Standardmaterial			

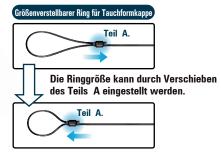
Modelle ul	nu Abinessungen	WAF . WAF Stell	t ful Schlusseiweite ("Width Across Flats).
Stecker	PH type (Schlau	chstutzen)	
⊢	- A - L - C		

NA - 4 - 11	Anwendung	Masse			Abmessur	gen (mm)		
Modell	(Schlauch)	Schlauch) (g)	L	C	Α	øD	øΤ	øΒ
BCV-3PH	3/8"	10	(58)	19	20	21	12	6

NA1 - 11	Anwendung	Masse		Abı	messungen (n	nm)	
Modell	(Schlauch)	(g)	L	øD	Α	øT	øB
BCC-3SH	3/8"	25	(73)	26	20	12	6

Tauchformkappe

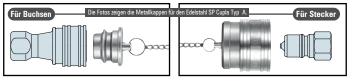
Staubschutzkappen für Hi Cupla, SP Cupla Type A, TSP Cupla und Hydraulic Cupla



• Die im Tauchverfahren hergestellten PVC-Staubschutzkappen sind für Hi Cuplas, SP Cuplas Type A, TSP Cuplas und Hydraulic Cuplas erhältlich. Staubschutzkappen verhindern das Eindringen von Staub in die Fluidleitung und schützen die Dichtigkeit und Lebensdauer des O-Rings.

	Teilenummer	Kappe für Hi Cupla	Verkaufseinheit		Teilenummer	Kappe für SP Cupla Type A	Verkaufseinheit		Teilenummer	Kappe für TSP Cupla	Verkaufseinheit		Teilenummer	Kappe für HSP Cupla	Verkaufseinheit
		Für den 20 Typ	1		CA96462	Für 1S-A	1		CA96542	Für 1TS	1		CA96463	Für 2HS	1
	CA96462	Für den 30 Typ	1		CA96463	Für 2S-A	1		CA96462	Für 2TS	1		CA96476	Für 3HS	1
		Für den 40 Typ	1		CA96464	Für 3S-A	1		CA96463	Für 3TS	1		CA96477	Für 4HS	1
Buchs		Für den 400 Typ	1		CA96465	Für 4S-A	1		CA96464	Für 4TS	1		CA96477	Für 6HS	1
	CA96464	Für den 600 Typ		Buchse	CA96466	Für 6S-A	1	Buchse	CA96465	Für 6TS	1	Buchse	CA96478	Für 66HS	1
		Für den 800 Typ			CA96467	Für 8S-A	1		CA96479	Für 8TS	1		CA96479	Für 8HS	1
		Für den 20 Typ	1		CA96468	Für 10S-A	1		CA96553	Für 10TS	1		CA96481	Für 10HS	1
	CA96453	Für den 30 Typ	1		CA96449	Für 12S-A	1		CA96555	Für 12TS	1		CA96481	Für 12HS	1
		Für den 40 Typ	1		CA96470	Für 16S-A	1		CA96557	Für 16TS	1		CA96482	Für 16HS	1
Stecke		Für den 400 Typ	1		CA96453	Für 1P-A	1		CA96541	Für 1TP	1		CA96454	Für 2HP	1
	CA96455	Für den 600 Typ	1		CA96454	Für 2P-A	1		CA96453	Für 2TP	1		CA96455	Für 3HP	1
		Für den 800 Typ	1		CA96455	Für 3P-A	1		CA96454	Für 3TP	1		CA96456	Für 4HP	1
					CA96456	Für 4P-A	1		CA96455	Für 4TP	1		CA96456	Für 6HP	1
	Teilenummer	Kappe für den 700R Cupla	Verkaufseinheit	Stecker	CA96457	Für 6P-A	1	Stecker	CA96456	Für 6TP	1	Stecker	CA96471	Für 66HP	1
	CB00614	Für 700R-3S	1		CA96458	Für 8P-A	1		CA96551	Für 8TP	1		CA96472	Für 8HP	1
Buchs	CA82644	Für 700R-4S	1		CA96459	Für 10P-A	1		CA96552	Für 10TP	1		CA96473	Für 10HP	1
	CA83164	Für 700R-3P	1		CA96460	Für 12P-A	1		CA96459	Für 12TP	1		CA96473	Für 12HP	1
Stecke	CA82643	Für 700R-4P	1		CA96461	Für 16P-A	1		CA96556	Für 16TP	1		CA96475	Für 16HP	1
	Teilenummer	Kappe für 210 Cupla	Verkaufseinheit		Teilenummer	Kappe für 280 Cupla	Verkaufseinheit		Teilenummer	Kappe für F35/350 Cupla	Verkaufseinheit		Teilenummer	Kappe für Zerospill Cupla	Verkaufseinheit
	CA96463	Für 210-2S	1		CB17082	Für 280-2S	1		CB28313	Für F35-2S	1		CA96463	Für ZEL-2S	1
	CA96476	Für 210-3S	1		CA96476	Für 280-3S	1		CA81551	Für F35/350-3S	1		CA96464	Für ZEL-3S	1
Buchs	CA81555	Für 210-4S	1	Buchse	CA81555	Für 280-4S	1	Buchse	CA81555	Für F35/350-4S	1	Buchse	CB28786	Für ZEL-4S	1
	CA96478	Für 210-6S	1		CA96478	Für 280-6S	1		CA97213	Für F35/350-6S	1		CA96466	Für ZEL-6S	1
	CA96466	Für 210-8S	1		CA96466	Für 280-8S	1		CA80401	Für F35/350-8S	1		CA96467	Für ZEL-8S	1
	CA96454	Für 210-2P	1		CA96453	Für 280-2P	1		CA96454	Für F35-2P	1		CA96454	Für ZEL-2P	1
	CA96455	Für 210-3P	1		CA96455	Für 280-3P	1		CA81553	Für F35/350-3P	1		CB28790	Für ZEL-3P	1
Stecke	CA82643	Für 210-4P	1	Stecker	CA82643	Für 280-4P	1	Stecker	CA81557	Für F35/350-4P	1	Stecker	CA96456	Für ZEL-4P	1
	CA96471	Für 210-6P	1		CA96471	Für 280-6P	1		CA97215	Für F35/350-6P	1		CA96457	Für ZEL-6P	1
	CA96551	Für 210-8P	1		CA96551	Für 280-8P	1		CA80402	Für F35/350-8P	1		CA96472	Für ZEL-8P	1

	Teilenummer	Kappe für HSU Cupla	Verkaufseinheit
	CA96463	Für HSU-2S	1
	CA96464	Für HSU-3S	1
Buchse	CA96465	Für HSU-4S	1
	CA96466	Für HSU-6S	1
	CA96467	Für HSU-8S	1
	CB60672	Für HSU-2P	1
	CB60673	Für HSU-3P	1
Stecker	CB60674	Für HSU-4P	1
	CB60675	Für HSU-6P	1
	CB60676	Für HSU-8P	1



Sicherheitskappe

Metallkappen für Hi Cupla-Serie, SP Cupla Type A, TSP Cupla und Hydraulic Cupla

(Semi-Standard)

- Metallkappe mit Staubschutz- und Leckschutzfunktion.
- Kappen aus einem Metallwerkstoff, der dem des Cupla-Gehäuses entspricht, sind erhältlich.

Modell	Einsetzbare Cuplas	Verkaufseinheit		
Der Modellname der Sicherheitskappe wird wie folgt angegeben. Modell = Cupla-Modell (normaler Cupla) + SD (Sicherheitskappe)	•	Beispiel: "2S-A-SD" kennzeichnet eine Sicherheitskappe für den SP Cupla Type A Modell 2S-A.	Buchsen und Stecker für Hi Cupla, SP Cupla Type A, TSP Cupla, HSP Cupla, 210 Cupla, S210 Cupla, 350 Cupla, 450B Cupla und SP-V Cupla	1 Stk.

Staubschutzkappe

Kunststoffkappe für Hi Cupla-Serie

• Staubschutzkappen verhindern das Eindringen von Staub in die Cuplas.

Siehe Seite 142 für Details zu Tauchformkappe und Sicherheitskappe für Hi Cupla.

Teilenummer	Modell	Einsetzbare Cuplas	Verkaufseinheit	Material
CQ12434 20S-D	Buchsen für die Hi Cupla-Serie der Typen 20/30/40	1	Debudand ablanta (DVC)	
	203-0	Hinweis: Staubschutzkappen können nicht an den Buchsen für den Full-Blow Cupla sowie die Typen 400/600/800 von Hi Cupla und Hi Cupla Ace angebracht werden.	'	Polyvinyl chloride (PVC)

Staubschutzkappe

Spezielle Polyethylenkappe für Hygienic Cupla

• Staubschutzkappe für Stecker und Buchse (aus Polyethylen).

Die Staubkappe entspricht der Norm Nr. 3-D-2-(1) und 3-D-2-(2)-4 für Geräte und Behälter. Sie hat sowohl Material- als auch Elutionstests bestanden, die in den Normen für Lebensmittel und Lebensmittelzusatzstoffe festgelegt sind. (Überarbeitete Mitteilung Nr. 201 vom 31. März 2006 durch das japanische Ministerium für Gesundheit)

Modell	Größe	Einsetzbare Cuplas	Verkaufseinheit	Material
SEW-1,5SP-D	1,5\$	Für Stocker und Duchee des Llugionis Cunte		Polyvinyl chloride (HDPE)
SEW-2,0SP-D	2,0\$	Für Stecker und Buchse des Hygienic Cupla	1	rolyvillyl chloride (HDPE)

Hülsenabdeckung

Kunststoffabdeckung für Hi Cupla-Serie (5 Stück pro Packung)

- Eine einfachere Schiebefunktion wird durch das Anbringen einer zusätzlichen Kunststoffabdeckung über der Buchsenhülse der Hi Cupla-Serie erreicht.
- Kunststoffabdeckungen reduzieren das Risiko einer Beschädigung, wenn der Cupla auf andere Komponenten oder Produkte aufprallt.
- Hülsenabdeckungen in verschiedenen Farben erleichtern die Identifikation der verschiedenen Luftleitungen.

Die Hülsenabdeckung kann nicht zusammen mit der Staubschutzkappe oder der Tauchformkappe verwendet werden.



Teilenummer	Modell	Farbe	Einsetzbare Cuplas	Verkaufseinheit	Material
CB23588	SLC-HI-R	Rot		5	
CB23590	SLC-HI-B	Blau	Für Buchsen der Hi Cupla-Serie	5	
CB23589	SLC-HI-Y	Gelb	Hinweis: Hülsenabdeckungen können nicht an Buchsen für den Full-Blow Cupla sowie die Typen	5	Thermoplastic elastomer (TPE)
CB23591	SLC-HI-W	Weiß	400/600/800 von Hi Cupla, Hi Cupla Ace, Stainless Hi Cupla und Brass Hi Cupla angebracht werden.	5	
CB23587	SLC-HI-K	Schwarz		5	

Schutzabdeckung

Kunststoffabdeckung für Nut Cupla und Full-Blow Cupla Nut-Typ (semitransparent)

- Für Nut Cupla und Full-Blow Cupla Nut-Typ.
- Die Schutzabdeckung umhüllt den gesamten Cupla, um Stöße zu absorbieren und as Risiko einer Beschädigung zu verringern, wenn der Cupla versehentlich auf andere Komponenten oder Produkte aufprallt.
- Schutzabdeckungen können auf den Schlauchdurchmesser zugeschnitten werden, an den der Cupla angeschlossen wird.
- Kann entweder an der Buchse oder am Stecker befestigt sowie als Staubschutzkappe verwendet werden.

Teilenummer	Modell	Einsetzbare Cuplas	Verkaufseinheit	Material
CB23784	SOC-HI	Kann an Buchse oder Stecker des Nut Cupla (SN- und PN-Typ) und die Buchse des Full-Blow Cupla (SN-Typ) angeschlossen werden.	1	Polyvinyl chloride (PVC)

Manometer

Zubehör für Luftleitungen

Luftleitungen für Hi Cupla-Serie

- Zum direkten Anschluss an Hi Cupla-Buchsen vom Typ 20/30/40.
- Praktisch zur Kontrolle der Entwässerung und des Drucks in Luftleitungen.

Hülsenstopper

Hülsenstopper für SP Cupla Type A

• Hülsenstopper ausschließlich für SP Cupla Type A-Buchsen. Das Anbringen des Hülsenstoppers nach dem Verbinden von Buchse und Stecker verriegelt die Hülse der Buchse und verhindert ein unerwartetes Lösen.

Ahlasshahn

	Teilenummer	Stopper für SP Cupla Type A-Buchse	Einsetzbare Cuplas	Verkaufseinheit	Material		Teilenummer	Stopper für SP Cupla Type A-Buchse	Einsetzbare Cuplas	Verkaufseinheit	Material							
	CB24350	Für 1S-A		10		Buchse -	CB26456	Für 10S-A		1	SUS 304							
	CB24351	Für 2S-A		10	Engineering plastics (POM)		CB26457	Für 12S-A		1								
Buchse	CB24352	Für 3S-A	SP Cupla Type A Buchsen	10			CB26458	Für 16S-A	SP Cupla Type A	1								
Duciise	CB24353	Für 4S-A		10					Buchsen									
	CB24354	Für 6S-A		10	10	10)						
	CB24355	Für 8S-A		10														

Zubehör für die O-Ring-Wartung

Vorrichtungen und Schmiermittel zum Austausch von O-Ringen für Kupplungen Für SP Cupla Type A, TSP Cupla, Hot Water Cupla, Zerospill Cupla, HSP Cupla, HSU Cupla und Hygienic Cupla

• Die Dichtungswerkstoffe spielen eine wichtige Rolle bei der Aufrechterhaltung der Leistungsfähigkeit einer Kupplung. O-Ringe oder Dichtungsmaterialien dieser Cupla-Serien sind austauschbar. Bitte achten Sie darauf, einen originalen und den korrekten O-Ring von Nitto Kohki zu wählen, um die Leistung der Kupplungen zu erhalten.

Schmiermittel für Cupla

- GRF-HC1 (Kohlenwasserstoff-Fett) für NBR-, FKM-O-Ring oder -Packung (Teile-Nr. CB28531)
- Verkaufseinheit: 1 Stk.

Schmiermittel für Cupla

- GRF-M1 (Mineralfett) für NBR-, FKM-O-Ring oder -Packung (Teile-Nr. CB23701)
- Verkaufseinheit: 1 Stk.

Schmiermittel für Cupla

- GRF-S1 (Silikonfett) für NBR-, FKM- und EPDM-O-Ring oder -Packung (Teile-Nr. CB23702)
- Verkaufseinheit: 1 Stk.

0-Ring für	Te	Verkaufseinheit		
SP Cupla Type A	NBR FKM		EPDM	verkautseinneit
Für 1S-A	CP01314	CP00907	CP03270	1
Für 2S-A	CP00927	CP00928	CP03333	1
Für 3S-A	CP00955	CP00956	CP03276	1
Für 4S-A	CP00978	CP00979	CP03283	1
Für 6S-A	CP01003	CP01004	CP03292	1
Für 8S-A	CP01029	CP01030	CP03298	1
Für 10S-A	CP00398	CP01053	CP07179	1
Für 12S-A	CP01076	CP01077	CP03902	1
Für 16S-A	CP01099	CP01100	CP06953	1

0-Ring für	Te	Verkaufseinheit		
TSP Cupla	NBR	FKM	EPDM	verkautseinneit
Für 1TS	CP03987	CP04984	CP09795	1
Für 2TS	CP01314	CP00907	CP03270	1
Für 3TS	CP00927	CP00928	CP03333	1
Für 4TS	CP00955	CP00956	CP03276	1
Für 6TS	CP00978	CP00979	CP03283	1
Für 8TS	CP00387	CP01258	CP04923	1
Für 10TS	CP01273	CP01274	CP09221	1
Für 12TS	CP00398	CP01053	CP07179	1
Für 16TS	CP01304	CP01305	CP09794	1

O-Ring für	Teilen	ummer	Verkaufseinheit
HSP Cupla	NBR	FKM	verkaurseinneit
Für 2HS	CP01185	CP02215	1
Für 3HS	CP01194	CP03335	1
Für 4HS	CP00294	CP02093	1
Für 6HS	CP00294	CP02093	1
Für 66HS	CQ33388	CP25937	1
Für 8HS	TP00293	CP01179	1
Für 10HS	CP01516	CP03371	1
Für 12HS	CP01516	CP03371	1
Für 16HS	CP03035	CP03453	1

Stützring	Teilenummer	Verkaufseinheit	
für HSP Cupla	PTFE	verkautseinneit	
Für 2HS	CP01186	1	
Für 3HS	CP01195	1	
Für 4HS	CP01203	1	
Für 6HS	CP01203	1	
Für 66HS	CP09659	1	
Für 8HS	CP01211	1	
Für 10HS	CP01517	1	
Für 12HS	CP01517	1	
Für 16HS	CP03036	1	

0-Ring für	Te	W 1		
Zerospill Cupla	NBR	FKM	EPDM	Verkaufseinheit
Für ZEL-2S	CQ40611	CQ40740	CQ43755	1
Für ZEL-3S	CQ40628	CQ40744	CQ43757	1
Für ZEL-4S	CQ40645	CQ40748	CQ43759	1
Für ZEL-6S	CQ40662	CQ40752	CQ43761	1
Für ZEL-8S	CQ40679	CQ40756	CQ43763	1

0-Ring für	Teilenummer	Valorification is	
HSU Cupla	HNBR	Verkaufseinheit	
HSU-2S	CQ42490	1	
HSU-3S	CQ42496	1	
HSU-4S	CQ42502	1	
HSU-6S	CQ43482	1	
HSU-8S	CQ43489	1	

O-Ring für	Teilenummer	Verkaufseinheit
Hot Water Cupla	FKM	VEIKAUISEIIIIEIL
HW-2S-F	CB64216	2
HW-3S-F	CB64217	2
HW-4S-F	CB64218	2

O-Ring für	Te	Vanlanda dalah d		
Hygienic Cupla	SI	FKM	EPDM	Verkaufseinheit
SEW-1,5P	CB63419	CB63420	CB63421	1
SEW-2,0P	CB62939	CB62940	CB62941	1

• Informationen über den Austausch des O-Rings finden Sie auf Seite 164.

Spüladapter

Metall-Spüladapter für Hydraulikleitungen (Semi-Standard)

Modell		PAD-2 (Teile-Nr. CB19855)					
Anwendbares Fluid		Hydraulic oil					
Material	Steel (Nickel plated)						
Anwendung	Rc 1/4						
Druckeinheit	MPa kgf/cm² Bar PSI						
Betriebsdruck	35,0 357 350 5080						
Dichtungsmaterial	Nitrile rubber (NBR)						
Betriebstemperaturbereich	-5 °C bis +80 °C						

• Kann an Hydraulikleitungen angeschlossen werden, um den Restdruck effektiv abzulassen.

Die Fotos zeigen die Vorrichtungen für den HSP Cu	pla.
---	------

•	The Allschiuss an Duchsen out steeker thispholit utili Allschiuss von Holliath Gupias.	Die Fotos zeigen die Vorric	htungen für den HSP Cupla.
I	Modell	Anbringbare Cuplas	Verkaufseinheit
	Der Modellname ist wie folgt zu definieren. ZN - Typ des zu befestigenden Cuplas Restdruckablassvorrichtung Beispiel: Für das Cupla-Modell 350-3S wäre der Name der Vorrichtung ZN-350-3S	Buchsen und Stecker für SP Cupla Type A, HSP Cupla, 210 Cupla, S210 Cupla, 280 Cupla und 350 Cupla	1 Stk.

Restdruckablassvorrichtung

Restdruckablassvorrichtung aus Metall für SP Cupla Type A und Hydraulic Cuplas (Semi-Star

- Der Restdruck in der Buchse oder im Stecker kann durch einfaches Drehen des Handhebels gelöst werden.
- · Restdruckablassvorrichtungen sind in zwei Ausführungen erhältlich: Buchsenausführung für die Verwendung mit Steckern und Steckerausführung für die Verwendung mit Buchsen.

Cupla-Adapter für Geflechtschlauchanschluss

Zur Montage auf Cupla-Stecker/Buchse mit Innengewinde

- Adapter f
 ür Cuplas mit Innengewinde wie Zerospill Cupla und SP Cupla Type A.
- Es ist keine Schlauchschelle erforderlich, wodurch das Risiko von Verletzungen an Fingern oder Handflächen reduziert wird.
- Die Abnutzung des Geflechtschlauchs am Schlauchstutzen wurde beseitigt.
- Einzigartige Mutternkonstruktion erhöht die Zugkraft von Geflechtschläuchen.
- Schieben Sie einfach einen Geflechtschlauch auf den Schlauchstutzen bis zum Ende und ziehen Sie die Mutter fest, bis sie bündig mit dem Schlauchstutzen abschließt.
- Es sind keine Innenteile für herkömmliche Geflechtschlauch-Dichtungsteile erforderlich. So kommt es nicht zu Fehlmontagen.

Ein Werkzeug und eine Schlauchschelle sind nicht erforderlich.

Bitte verwenden Sie handelsübliche Geflechtschläuche.

Technische Daten							
Gehäusewerkstoff		Bra	ass				
Modell	BH90-3M	BH120-4M	BH150-4M	BH190-6M			
Größe (Gewinde)	3/8"	1/2"	1/2"	3/4"			
Größe des Geflechtschlauchs	ø9 x ø15 mm ø12 x ø18 mm ø15 x ø22 mm ø19 x ø26						
Betriebsdruck *1	Abhängig von den	Spezifikationen der	zu verwendenden (Geflechtschläuche.			
Betriebstemperaturbereich *1	Abhängig von den	Spezifikationen der	zu verwendenden (Geflechtschläuche.			
Anwendbare Fluids *2		Air, Wa	ater, Oil				

Max. Anzugsdrehmoment Nm {kgf · c										
Modell	BH90-3M	BH120-4M	BH150-4M	BH190-6M						
Drehmoment (kegelige Rohrgewinde) *3,4	12 {122}	30 {306}	30 {306}	50 {510}						

- *1 : Maximaler Betriebsdruck und Betriebstemperatur von Cupla und Adapter für Geflechtschläuche hängen von den

- *1 : Maximaler Betriebsdruck und Betriebstemperatur von Cupla und Adapter für Geflechtschlauche hangen von den Spezifikationen der zu verwendenden Geflechtschläuche ab.

 *2 : Gebrauch innerhalb der Spezifikation des Dichtungsmaterials und des zu verwendenden Geflechtschlauchs.

 *3 : Eine Spannungsrisskorrosion kann bei Messing Cupla und Adapter auftreten, wenn sie in einer korrosiven Umgebung eingesetzt werden. Beachten Sie die Nutzungsbedingungen.

 *4 : Ziehen Sie die Mutter an, bis sie bündig mit dem Schlauchstutzen abschließt, nachdem Sie einen Geflechtschlauch bis zum Ende

hineingedrückt haben.

Geflechtschläuche sollten aus Weich-PVC hergestellt und mit Verstärkungsfäden gewebt werden.

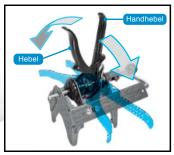
Vorteile ohne Schlauchschelle

Modell	Anwendung (Schlauch)	Schlauchwandstärke	Masse	Abmessungen (mm)							
Modell	(mm)	(mm)	(g)	L	H1 (WAF)	H2 (WAF)	T	øB			
BH90-3M	ø9 x ø15	3 ±0,3	106	(49)	Hex.23	Hex.24	R 3/8	8,5			
BH120-4M	ø12 x ø18	3±0,3	159	(59)	Hex.27	Hex.27	R 1/2	11			
BH150-4M	ø15 x ø22	3.5±0,35	210	(67)	Hex.30	Hex.30	R 1/2	13			
BH190-6M	ø19 x ø26	3.5 ± 0,35	301	(74)	Hex.35	Hex.35	R 3/4	17			

Cupla-Verbindungsvorrichtung

Verbindungsvorrichtung für große Cuplas

Technische Daten Modell CJ-1 Gehäusewerkstoff Stainless steel (SUS430), Aluminum alloy **Einsetzbare Cuplas** Siehe Liste rechts Anschluss unter Restdruck Nicht möglich Betriebstemperatur Normale Temperatur Lagertemperaturbereich -20 °C bis +60 °C Masse 1,85 kg Zubehör 4 mm-Sechskantschlüssel, Bedienungsanhänger, Kabelbinder


Vor dem Gebrauch den anzuschließenden Cupla überprüfen und je nach Modell und Größe einstellen.

Vielseitig


Entspricht allen anwendbaren Modellen*1 durch Anpassung der Gehäuselänge.

*1: Standard-Cuplas im Cupla-Gesamtkatalog (Zweiwege-Absperrventil). Ausgenommen ist die Multi Cupla-Serie. Siehe Liste der anwendbaren Modelle unten.

Der Handhebel kann in jedem Winkel verwendet werden, um Interferenzen mit dem Cupla zu vermeiden.

Sicher

Tritt beim Anschließen zu viel Kraft auf, verhindert die Sicherheitseinrichtung eine Beschädigung des Gehäuses. Ist die Sicherheitseinrichtung aktiviert, ist die Verbindung des Cuplas deaktiviert

Liste der anwendbaren Modelle

Anwendbare Modelle		Größe (G	iewinde)	
Allwellubate Wouelle	Rc 1	Rc 1 1/4	Rc 1 1/2	Rc 2
SP Cupla Type A	8SP-A	10SP-A	12SP-A	16SP-A
Zerospill Cupla	ZEL-8SP	-	-	-
HSP Cupla	8HSP	10HSP	12HSP	16HSP
210 Cupla	210-8SP	-	-	-
HSU Cupla	HSU-8SP	-	-	-
S210 Cupla	S210-8SP	-	-	-
280 Cupla	280-8SP	-	-	-
350 Cupla	350-8SP	350-10SP	350-12SP	-
Flat Face Cupla F35	F35-8SP	-	-	-
Flat Face Cupla FF	FF-8SP	-	-	-
Semicon Cupla SP Type	8SP-304	-	-	-
Semicon Cupla SCS Type	SCS-8SP	-	-	-
Semicon Cupla SCY Type	SCY-8SP	-	-	-
Semicon Cupla SCT Type	SCT-8SP	-	-	-
Semicon Cupla SCAL Type	SCAL-8SP	-	SCAL-12SP	-

Modelle und Abmessungen Modell: CJ-1 (Hinweis) Wenn der Handhebel senkrecht zum Gehäuse steht, stört er möglicherweise den Cupla und kann daher nicht Kippen Sie in diesem Fall den Handhebel in einen geeigneten Winkel. Anschluss eines großen Cuplas mit Hebelbetätigung (Hinweis) (52) 133) * Um Verletzungen vorzubeugen, wird das Tragen von Handschuhen empfohlen.

Dichtungsmaterial-Auswahltabelle als Referenz

Für die Dichtungsteile im Cupla (die wichtigen Teile, die ein Auslaufen verhindern) ist es wichtig, das am besten geeignete Dichtungsmaterial gemäß Eigenschaften und Temperatur des Fluids auszuwählen. Es ist besonders wichtig, eine richtige Auswahl zu treffen, da anderenfalls nicht nur der Cupla komplett ausfallen, sondern es auch zu einem unerwarteten Unfall kommen kann.

Wenn das betreffende Fluid nicht in der "Dichtungsmaterial-Auswahltabelle (als Referenz)" aufgeführt ist, sollte das von Ihnen gewählte Dichtungsmaterial unter realen Bedingungen getestet werden. Auch wenn das Fluid in der folgenden Liste aufgeführt ist, kann der Test in einigen Fällen erforderlich sein.

				Dichtu	ıngsm	ateria	I_	
	Fluids	Nitrile rubber	Hydrogenated nitrile rubber	Ethylene-propylene rubber	Fluoro rubber	Perfluoro- elastomer	Silicone rubber	Chloroprene rubber
2	2,2-Dimethyl-butane	0	0	×	0	0	×	\triangle
	2,3-Dimethyl-butane	0	0	×	0	0	×	Δ
	2,4-Dimethyl-pentane	0	0	×	0	0	×	×
	2-Methyl-pentane	0	0	×	0	0	×	×
3	3-Methyl-pentane	0	0	×	0	0	×	×
Α	Acetaldehyde	Δ	\triangle	0	×	Δ	0	Δ
	Acetic acid	0	0	0	Δ	0	Δ	0
	Acetic anhydride	Δ	×	0	×	0	0	0
	Acetone	×	×	0	×	0	×	×
	Acetonitrile	×		×	Δ	0	×	×
	Acetophenone	×	×	0	×	0	×	×
	Acetyl chloride	×	×	×	0	0	×	×
	Acetylacetone	×	×	0	×	0	×	×
	Acetylene	0	0	0	0	0	0	0
	Air (50°C)	0	0	0	0	0	0	0
	Aluminium bromide	0	0	0	0	0	0	0
	Aluminium chloride	0	0	0	0	0	0	0
	Aluminium nitrate	0	0	0	0	0	0	0
	Aluminium sulfate	0	0	0	0	0	0	0
	Amine mixture	×	×	0	×	×	0	0
	Ammonia (anhydrous)	0	0	0	×	0	0	0
	Ammonia (Liquid) (65°C)				×	0		
	Ammonia (Liquid) (Cool)			0	×	0	0	0
	Ammonia gas (Low temperature)	0	0	0	X	0	0	0
	Ammonium carbonate	X	×	0	0	0	×	0
	Ammonium chloride	0	0	0	0	0	×	0
	Ammonium hydroxide	×	×	© ×	×	×	© ×	×
	Ammonium magnesium sulfate	0	0	0	^		0	0
	Ammonium nitrate (65°C) Ammonium phosphate (65°C)	0		0	×	0	0	0
	Ammonium sulfate	0	0	0	×	0	0	0
	Ammonium sulfite		Δ	0	Δ	0	0	0
	Ammonium thiosulfate			0	Δ	0	0	0
	Amyl acetate	×	×	Δ	×	0	×	×
	Amyl alcohol	0	0	0	0	0	×	0
	Aniline	×	×	0	Δ	0	×	×
	Animal oil (Lard)	0	0	0	0	0	0	0
	Arsenic trichloride			×	×	0	×	×
	Asphalt	0	0	×	0	0	×	×
В	Barium chloride	0	0	0	0	0	0	0
	Barium hydroxide	0	0	0	0	0	0	0
	Barium nitrate	Δ	\triangle	0	\triangle	0	0	0
	Barium sulfate (65°C)	0		0	0	0	0	0
	Barium sulfide	0	0	0	0	0	0	0
	Beer	0	0	0	0	0	0	0
	Benzaldehyde	×	×	0	×	0	0	×
	Benzene	×	×	×	0	0	×	×
	Benzyl alcohol	×	×	0	0	0	Δ	0
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	0	×	×
	Benzyl chloride	×	×	×	0		_ ^ `	
	-	×	×	×	×	0	Δ	0
	Benzyl chloride					_		

Butane	
Butane	rubber
Butane (liquid)	×
Butanol (Butyl alcohol)	\triangle
Butter and butter oil Butyl acetate X	0
Butyl acetate	0
Butyl stearate	×
Butylaldehyde	×
Butylene	×
C Cadmium cyanide △ △ △ △ ○	×
Calcium acetate	\triangle
Calcium acetate (65°C) ○ ○ × ○	0
Calcium carbide Calcium carbonate Calcium hydroxide Calcium perchlorate Calcium sulfate Carbitol Carbon dioxide gas (65°C) Carbon monoxide (65°C) Carbon monoxide (65°C) Carbon tetrachloride	0
Calcium carbonate Calcium hydroxide Calcium perchlorate Calcium sulfate Carbon dioxide gas (65°C) Carbon dioxide gas (65°C) Carbon monoxide (65°C) Carbon tetrachloride	0
Calcium hydroxide Image: Calcium nitrate (65°C) Image: Calcium	
Calcium nitrate (65°C) Image: Ca	0
Calcium perchlorate X	0
Calcium sulfate △ △ △ ○	0
Calcium sulfate (65°C) X Image: Calcium sulfate (65°C)	×
Calcium sulfite Image: Carbitol in the carbon dioxide gas (65°C) in the carbon dioxide gas (0
Calcium sulfite Image: Carbitol in the carbon dioxide gas (65°C) in the carbon dioxide gas (
Carbitol O<	0
Carbon dioxide gas (65°C) Image: Carbon dioxide gas (65°	${\circ}$
Carbon disulfide ×	0
Carbon monoxide (65°C)	×
Carbon tetrachloride O X O X	0
	×
Castor oil	^
	×
	×
	×
	×
	×
	×
	^
Chromium hydroxide	· ·
	×
	0_
	X
	0
	0
	0
	Δ
	×
	×
7	×
	×
D Developer	0
Diacetone alcohol	0
Dibenzyl ether	×
Dichlorophenol O X O X X	×
Diesel oil © X © X :	×
Diethanolamine	0

Dichtungsmaterial-Auswahltabelle als Referenz

- Lesen der © Praktisch nicht schädlich, und kann verwendet werden (ausgezeichnet)

 Auswahltabellen © Geringe Schädlichkeit ist evtl. unvermeidlich, kann aber unter Einschränkungen verwendet werden (gut)
 - Sollte möglichst vermieden werden (nicht empfohlen)
 X Sollte nicht verwendet werden (ungeeignet)

Hinweis: Kontaktieren Sie uns, wenn das Feld leer ist.

Hinweis: Bitte beachten Sie bei der Auswahl des Dichtungsmaterials die folgenden Hinweise:

- unter Sättigung.

 2. Bitte fragen Sie uns nach Anwendungen bei hohen Fluidtemperaturen oder bei unterschiedlichen Fluidkonzentrationen.

 3. Für Anwendungen im Lebensmittelbereich bestellen Sie bitte separat unter Angabe der detaillierten Anwendungen.

	·		[Dichtu	ngsm	ateria	l					[Dichtu	ngsm	ateria	ı	
	Fluids	Nitrile rubber	Hydrogenated nitrile rubber	Ethylene-propylene rubber	Fluoro rubber	Perfluoro- elastomer	Silicone rubber	Chloroprene rubber		Fluids	Nitrile rubber	Hydrogenated nitrile rubber	Ethylene-propylene rubber	Fluoro rubber	Perfluoro- elastomer	Silicone rubber	Chloroprene rubber
D	Diethylene glycol	0	0	0	0	0	0	0	М	Magnesium sulfate	0		0	0	0	0	0
Ε	Ethanol (Ethyl alcohol)	\triangle	\triangle	0	\triangle	0	0	0		Maleic anhydride	×	×	0	×	0	×	×
	Ethyl acetate	×		0	×		0	×		Mercury	0	0	0	0	0	×	0
	Ethyl benzene	×	×	×	0	0	×	×		Methanol	×	×	0	×	0	0	0
	Ethyl cellulose	0	0	0	×	0	0	0		Methyl bromide	0	0	×	0	0	×	×
	Ethyl chloride	0	0	\triangle	0	0	×	×		Methyl butyl ketone	×	×	0	×	0	×	×
	Ethylene glycol	0	0	0	0	0	0	0		Methyl chloride	×	×	Δ	0	0	×	×
	Ethylene trichloride	×	×	\triangle	0	0	×	×		Methyl ethyl ketone (MEK)	×	×	0	×	0	×	×
F	Ferric sulfate	0	0	0	0	0		0		Methyl isobutyl ketone (MIBK)	×	×		×	0	×	×
	Fish oil	0	0	×	0	0	0	×		Methyl propyl ketone	×		0	×		×	×
	Fluorine (Gas)	×		×	×	0	×	×		Methyl salicylate	×	×	0	×	0	×	
	Formic aldehyde	\triangle	\triangle	0	×	0	0	\triangle		Methylene bromide	×		×	0	0	×	×
	Freon 11	0	×	×	0	0	×	×		Methylene chloride	×		×	0	0	×	×
	Freon 12	0	0	\triangle	\triangle	0	×	0		Milk	0	0	0	0	0	0	0
	Freon 22	×	×	\triangle	×	0	×	0		Mineral oil	0	0	×	0	0	\triangle	Δ
	Fuel oil	0		×	0	0	×	0		Monobromobenzene	×		×	0	0	×	×
	Furfural	×	×	0	×	0	×	×		Monochlorobenzene	×	×	×	0	0	×	×
G	Gasoline	0	0	×	0	0	×	×		Monoethanolamine (MEA)	×	×	0	×	0	0	×
	Gelatin	0	0	0	0	0	0	0	N	n-amyl alcohol	×		×	×		×	×
	Glucose	0	0	0	0	0	0	0		Naphtha	0	0	×	0	0	×	×
	Glycerine (65°C)	0	0	0	0	0	0	0		Naphthalene	×	×	×	0	0	×	×
	Grease (Petroleum-based)	0	0	×	0	0	×	×		Naphthenic oil	0		×	0		×	×
н	Helium	0	0	0	0	0	0	0		n-butyl alcohol	×		×	×		×	×
	Heptane (n-heptane)	0	0	×	0	0	×	0		Nickel acetate	0	0	0	×	0	×	0
	Hexane (n-hexane)	0	0	×	0	0	×	0		Nickel acetate (65°C)	×		0	×		×	×
	Hexylene glycol	\triangle	\triangle	0	\triangle	0	0	0		Nickel ammonium sulfate	\triangle		0	\triangle	0	0	0
	Hydraulic oil (Petroleum-based)	0	0	×	0	0	0	×		Nickel chloride	0	0	0	0	0	0	0
	Hydraulic oil (Phosphate ester series)	×	×	0	0	0	\triangle	×		Nickel nitrate	\triangle	\triangle	0	\triangle	0	0	0
	Hydraulic oil (Synthetically-prepared)	0	0	×	0	0		×		Nickel sulfate	0	0	0	0	0	0	0
	Hydraulic oil (Water-glycol series)	0	0	0	0	0	0	0		Nitrobenzene	×	×		0	0	×	×
	Hydraulic oil (Water-in-oil emulsion series)	0	0	×	0	0	\triangle	×		Nitrogen (gas)	0	0	0	0	0	0	0
	Hydrobromic acid	×	×	0	0	0	×	×	0	Octyl alcohol	0	0		0	0	0	0
	Hydrogen	0	0	0	0	0	\triangle	0		Oleic acid	\triangle	\triangle	×	0	0	×	×
	Hydrogen peroxide (30%)	×			0		0	×		Olive oil	0	0	0	0	0	\triangle	×
L	Iron chloride	0		0	0		0	0		Ortho-dichlorobenzene	×	×	×	0	0	×	×
	Iron nitrate (65°C)	0		0	0		0	0		Oxygen (gas)	0	0	0	0	0	0	0
	Iron sulfite (100%)	0		×	×		×	×		Ozone	×	\triangle	0	0	0	0	×
	Isoamyl alcohol	×		×	×		×	×	P	Palm oil	×		×	×		×	×
	Isooctane	0	0	×	0	0	×	0		Paradichlorobenzene	×	×	×	0	0	×	×
	Isopropanol	0	0	0	0	0	0	0		Paraffin oil	0	0	×	0	0	×	×
	Isopropyl acetate	×	×	0	×	0	×	×		Peanut oil	0		Δ	0		0	0
	Isopropyl alcohol	0	0	0	0	0	0	0		Pentane (n-pentane)	0	0	×	0	0	×	0
	Isopropyl ether	0	0	×	×	0	×	×		Phenol	×	×	×	0	0	×	×
K	Kerosene	0	0	×	0	0	×	0		Phosphorous oxychloride (dry)	0		0	0		0	0
L	Lard and lard oil	0	0	0	0	0	0	0		Phosphorous oxychloride (wet)	0		0	0		0	0
	Latex	×		×	×		×	×		Phosphorus	×		×	×	0	×	×
	Liquefied petroleum gas (LPG)	0	0	×	0	0	Δ	×		Pine oil	0	0	×	0	0	×	×
	Liquors (beet)	0	0	0	0	0	0	0		Potassium acetate (65°C)	0	0	0	×	0	×	0
	Lubricating oil (SAE 10, 20, 30, 40, 50)	0	0	×	0	0	×	×		Potassium aluminium sulfate	\triangle	\triangle	0	Δ	0	0	0
M	Magnesium chloride	0	0	0	0	0	0	0		Potassium bicarbonate	\triangle	\triangle	0	Δ	0	0	0
	Magnesium hydroxide	0	0	0	0	0	×	0		Potassium bichromate	0		0	0	0	0	0
	Magnesium nitrate	0		×	×		×	×		Potassium carbonate	\triangle	\triangle	0	Δ	0	0	0
												OUICK 🖊	HOL	_			148

Dichtungsmaterial-Auswahltabelle als Referenz

			[Dichtu	ngsm	ateria	I	
	Fluids	Nitrile rubber	Hydrogenated nitrile rubber	Ethylene-propylene rubber	Fluoro rubber	Perfluoro- elastomer	Silicone rubber	Chloroprene rubber
Р	Potassium cyanide	0	0	0	0	0	0	0
	Potassium hydroxide (50%)	0	0	0	×	0	Δ	0
	Potassium hyposulfite	0		0	0		0	0
	Potassium nitrate	0	0	0	0	0	0	0
	Potassium nitrite	Δ	\triangle	0	\triangle	0	0	0
	Potassium phosphate	Δ	\triangle	0	\triangle	0	0	0
	Potassium silicate	0	0	0	0	0	×	0
	Potassium sulfate	0	0	0	0	0	0	0
	Potassium thiosulfate			0		0	0	0
	Propane	0	0	×	0	0	×	0
	Propionaldehyde			0		0	0	0
	Propionitrile	0	0	×	0	0	0	0
	Propyl acetate	×	×	0	×	0	×	×
	Propyl alcohol	0	0	0	0	0	0	0
	Propylene	Δ	Δ	×	0	0	×	×
	Pyridine	×		0	×	0	×	×
R	Rosin oil	0		×	×		×	×
S	Secondary butyl alcohol	0	0	0	0	0	0	0
	Soapy water (65°C)	0	0	0	0	0	0	0
	Sodium acetate	0	0	0	×	0	×	0
	Sodium aluminate	\triangle	\triangle	0	\triangle	0	0	0
	Sodium bicarbonate	0	0	0	0	0	0	0
	Sodium bichromate	Δ	\triangle	0	\triangle	0	0	0
	Sodium carbonate	0	0	0	0	0	0	0
	Sodium chloride	0	0	0	0	0	0	0
	Sodium chloride (salt water)	0	0	0	0	0	0	0
	Sodium cyanide	0	0	0	0	0	0	0
	Sodium hydroxide	\triangle	\triangle	0	\triangle	0	0	0
	Sodium hypochlorite (1%)	0	0	0	0	0	0	0
	Sodium hyposulfite	\triangle	\triangle	0	\triangle	0	0	0
	Sodium iodide	Δ	\triangle	0	\triangle	0	0	0
	Sodium metaphosphate	0	0	0	0	0	×	0
	Sodium nitrate	\triangle		0	\triangle	0	×	0
	Sodium nitrite	0	0	0	×	0	×	0
	Sodium perborate	0	0	0	0	0	0	0
	Sodium peroxide	0	0	0	0	0	×	0
	Sodium phosphate	0	0	0	0	0	×	0
	Sodium plumbate	\triangle	\triangle	0	\triangle	0	0	0
	Sodium pyrosulfate	0	0	0	0	0	0	0
	Sodium silicate (Water glass)	0	0	0	0	0	×	0
	Sodium sulfate	0	0	0	0	0	0	0
	Sodium sulfide	0	0	0	0	0	0	0
	Sodium sulfite	0	0	0	0	0	0	0
	Spindle oil	0	0	×	0	0	Δ	×
	Starch	0		0	0		0	0
	Steam (100°C)	×	×	0	0	0	×	×
	Styrene monomer	×	×	×	0	0	×	×
	Sucrose solution	0	0	0	0	0	0	0
	Sulfur	×	×	0	0	0	0	0
	Sulfur chloride (dry)	×	×	×	0	0	Δ	×
	Sulfur dioxide	×	×	0	×	0	0	×
	Sulfur tetroxide	×		×	0		×	×

			I					
	Fluids	Nitrile rubber	Hydrogenated nitrile rubber	Ethylene-propylene rubber	Fluoro rubber	Perfluoro- elastomer	Silicone rubber	Chloroprene rubber
S	Syrup	0						
Т	Tertiary butyl alcohol	0	0	0	0	0	0	0
	Tetrachloroethylene	×	×	×	0	0	×	×
	Tetraethyl lead	0	0	×	0	0	×	×
	Tetralin	×	×	×	0	0	Δ	×
	Titanium terachloride	0		×	0	0	×	×
	Toluene (Toluol)	×	×	×	Δ	0	×	×
	Triethanolamine			0	×	0	×	0
	Triphenyl phosphite	X		0	×		×	×
	Tung oil	0	0	×	0	0	×	0
٧	Vinyl acetate	×		© ×	×	0	×	×
W	Vinyl chloride	0	0		0	0	0	
VV	Water Whisky	0	0	0	0	0	0	0
	Wine	0	0	0	0	0	0	0
Х	Xylene	×	×	×	0	0	×	×
Z	Zinc chloride	0	0	0	0	0		0
_	Zinc sulfate	0	0	0	0	0	0	0

Gehäusewerkstoff-Auswahltabelle

Die Auswahl des geeigneten Gehäusematerials für den Cupla hängt eng mit der Anwendung, der Art des durchströmten Fluids, der Konzentration (%), dem Druck, der Arbeitsumgebung usw. zusammen. Deshalb muss das Material sorgfältig ausgewählt werden, um den Cupla effizient zu nutzen und seine volle Leistungsfähigkeit zu erreichen. Da es einige Gehäusewerkstoffe gibt, die nicht mit bestimmten Flüssigkeiten verwendet werden sollten, beachten Sie bitte diese Tabelle, wenn Sie Ihre Auswahl treffen.

△ :unter bestimmten Bedingungen nicht geeignet ×:ungeeignet

	Fluids	Messing	Edelstahl	Stahl	Aluminum	Polypropylen
Α	Acetic acid	×	0		×	\triangle
	Acetic anhydride	×	0		\triangle	0
	Acetone	0	0	0	0	\triangle
	Air	0	0	0	0	0
	Aluminum fluoride	0	X			0
	Aluminum chloride	×	X		×	0
	Aluminum sulfate	×	0			0
	Ammonia	X	0		X	0
	Ammonium nitrate	×	0			0
	Ammonium phosphate	Δ	0		X	0
	Ammonium sulfate	Δ	Δ		0	0
	Aniline	×	0		0	\triangle
	Arsenic acid	Δ	0		Δ	0
В	Barium chloride	X	X			0
	Barium hydroxide	×	0		×	0
	Barium sulfide		0	0		0
	Beer	0	0	Δ	0	0
	Benzene	X	0	0	0	Δ
	Benzine	0	0	0	0	Δ
	Boric acid	Δ	0		×	0
	Butane	0	0	0		0
	Butyl acetate	0	0	0	0	Δ
С	Calcium chloride	0	Δ		Δ	0
	Calcium hydroxide	0	0	\circ	×	0
	Carbon dioxide	0	0	0	0	0
	Carbon disulfide	0	0			×
	Carbon tetrachloride	Δ	0		×	×
	Carbonic acid	0	0	0	0	0
	Chlorine		×			×
	Caustic soda		\triangle		×	0
	Chromic acid	×	×		×	×
	Citric acid	Δ	0		Δ	0
	Cresol acid	0	0	0	Δ	0
D	Diesel fuel	0	0	0	0	Δ
	Dowtherm		0			
	Drinking water	Δ	0			0
E	Ethanol	0	0	0	0	0
	Ether	0	0	0	0	Δ
	Ethyl acetate	0	Δ	Δ	Δ	
	Ethylene chloride					
	Ethylene glycol	0	0	0	0	0
F	Fatty acid		0			×
	Ferric chloride	×	×		×	0
	Ferric culoride	×	\triangle			0
	Formaldehyde 40%	Δ	0		\triangle	0
	Formic acid	×	0		×	0
		_			_	×
	Freon	0	0	0	0	X

	Fluids	Messing	Edelstahl	Stahl	Aluminum	Polypropylen
G	Glycerine	0	\cap	\circ	0	0
Н	Hexane	0	0		0	Δ
	Hydrobromic acid	Ŭ	×		×	0
	Hydrochloric acid	×	X	×	×	0
	Hydrofluoric acid	Δ	×		×	0
	Hydrogen	0	0	0	0	0
	Hydrogen peroxide	×	0			0
	Hydrogen sulfide	\triangle	\triangle			0
ı	Industrial water	0	0	\triangle		
J	Jet fuel		0	\triangle		
L	Lactic acid	×	0		×	0
	Liquefied petroleum gas (LPG)	0	0	0	0	0
М	Magnesium chloride	×	×		Δ	0
	Mercury	×	0	0		0
	Methyl alcohol	0	0	0	0	0
N	Naphtha	0	0	0	0	Δ
	Naphthalene	0	0	0	0	0
	Natural gas	0	0	0	0	0
	Nickel chloride	×	×			0
	Nitric acid	×	Δ		×	Δ
	Nitrobenzene	\triangle	0	0		×
0	Octane					
	Oxygen	0	0	0		0
Р	Paraffin	0	0	0		
	Phenol	\triangle	0			0
	Phosphoric acid	×	0		×	0
	Potassium chloride	\triangle	\triangle		×	0
	Potassium hydroxide	\triangle	0		×	0
	Pure water	\triangle	0			0
R	Refined gasoline	0	0	0	0	0
	Refined petroleum	0	0	0	0	0
s	Salt water	×	\triangle	×	×	0
	Sodium carbonate	0	0	0	\triangle	0
	Sodium chloride	\triangle	\triangle	×	X	0
	Sodium hudroxide		0		×	Δ
	Sodium nitrate	\triangle	0	0		0
	Sodium phosphate		\triangle			0
	Sodium sulfate	0	0	0	0	0
	Sulfuric acid	×	×	×	×	\triangle
	Sulfurous acid	×	\triangle			0
Т	Tannic acid	×	0			0
W	Wine	0	0		0	0
Z	Zinc chloride	×	\triangle		\triangle	0

Hinweise: 1. Da die Fluidkonzentration (%) und die Einsatzbedingungen die Leistung beeinflussen können, ist eine detaillierte Untersuchung bei der Materialauswahl erforderlich.

Hinweise: 2. Für die Zellen, die keine Symbolmarkierungen haben, fragen Sie uns bitte nach einem geeigneten Gehäusewerkstoff.

Tabellen zur Einheitenumrechnung

Länge							
m	cm	in	ft	yd	km	mile	n-mile
1	1 x 10 ²	3,937 x 10	3,281	1,094	1	6,214 x 10 ⁻¹	5,400 x 10 ⁻¹
1 x 10 ⁻²	1	3,937 x 10 ⁻¹	3,281 x 10 ⁻²	1,094 x 10 ⁻²	1,6093	1	8,690 x 10 ⁻¹
2,54 x 10 ⁻²	2,540	1	8,333 x 10 ⁻²	2,778 x 10 ⁻²	1,852	1,151	1
3,048 x 10 ⁻¹	3,048 x 10	1,2 x 10	1	3,333 x 10 ⁻¹			
9,144 x 10 ⁻¹	9,144 x 10	3,9 x 10	3	1			

Fläche							
m²	in ²	ft²	yd ²	km²	acre	mile ²	ha
1	1,550 x 10 ³	1,076 x 10	1,196	1	2,471 x 10 ²	3,861 x 10 ⁻¹	1,00 x 10 ²
6,452 x 10 ⁻⁴	1	6,944 x 10 ⁻³	7,716 x 10 ⁻⁴	4,046 x 10 ⁻³	1	1,562 x 10 ⁻³	4,047 x 10 ⁻²
9,290 x 10 ⁻²	1,44 x 10 ²	1	1,111 x 10 ⁻¹	2,590	6,40 x 10 ²	1	2,590 x 10 ²
8,361 x 10 ⁻¹	1,296 x 10 ³	9	1	1 x 10 ⁻²	2,471	3,861 x 10 ⁻³	1

Masse (G	Masse (Gewicht)									
kg	gr	0Z	lb	t (metrische Tonnen)	ltn (englische Tonnen)	stn (amerikanische Tonnen)				
1	1,5432 x 10 ⁴	3,527 x 10	2,205	1 x 10 ⁻³	9,842 x 10 ⁻⁴	1,102 x 10 ⁻³				
6,480 x 10 ⁻⁵	1	2,286 x 10 ⁻³	1,429 x 10 ⁻⁴	6,480 x 10 ⁻⁸	6,328 x 10 ⁻⁸	7,143 x 10 ⁻⁸				
2,835 x 10 ⁻²	4,375 x 10 ²	1	6,25 x 10 ⁻²	2,835 x 10 ⁻⁵	2,790 x 10 ⁻⁵	3,125 x 10 ⁻⁵				
4,536 x 10 ⁻¹	7,000 x 10 ³	1,6 x 10	1	4,536 x 10 ⁻⁴	4,464 x 10 ⁻⁴	5 x 10 ⁻⁴				
1,000 x 10 ³	1,543 x 10 ⁷	3,5274 x 10⁴	2,205 x 10 ³	1	9,842 x 10 ⁻¹	1,102				
1,016 x 10 ³	1,568 x 10 ⁷	3,5840 x 10 ⁴	2,240 x 10 ³	1,016	1	1,12				
9,072 x 10 ²	1,4 x 10 ⁷	3,2000 x 10 ⁴	2,000 x 10 ³	9,072 x 10 ⁻¹	8,929 x 10 ⁻¹	1				

Kraft					
N	kgf	lbf	pdl		
1	1,020 x 10 ⁻¹	2,248 x 10 ⁻¹	7,233		
9,807	1	2,205	7,093 x 10		
4,448	4,536 x 10 ⁻¹	1	3,217 x 10		
1,383 x 10 ⁻¹	1,410 x 10 ⁻²	3,108 x 10 ⁻²	1		

Druck	Druck									
МРа	kgf/cm²	lbf/in² (PSI)	atm	mmHg	inHg	mmH ₂ O	ftH ₂ 0			
1	1,020 x 10	1,450 x 10 ²	9,869	7,501 x 10 ³	2,953 x 10 ²	1,01972 x 10⁵	3,346 x 10 ²			
9,807 x 10 ⁻²	1	1,422 x 10	9,678 x 10 ⁻¹	7,356 x 10 ²	2,896 x 10	1,0000 x 10 ⁴	3,281 x 10			
6,895 x 10 ⁻³	7,031 x 10 ⁻²	1	6,805 x 10 ⁻²	5,172 x 10	2,036	7,031 x 10 ²	2,307			
1,013 x 10 ⁻¹	1,033	1,470 x 10	1	7,60 x 10 ²	2,992 x 10	1,0332 x 10 ⁴	3,390 x 10			
1,333 x 10 ⁻⁴	1,360 x 10 ⁻³	1,934 x 10 ⁻²	1,316 x 10 ⁻³	1	3,937 x 10 ⁻²	1,360 x 10	4,460 x 10 ⁻²			
3,386 x 10 ⁻³	3,453 x 10 ⁻²	4,912 x 10 ⁻¹	3,342 x 10 ⁻²	2,54 x 10	1	3,453 x 10 ²	1,133			
9,806 x 10 ⁻⁶	1 x 10 ⁻⁴	1,422 x 10 ⁻³	9,678 x 10 ⁻⁵	7,356 x 10 ⁻²	2,896 x 10 ⁻³	1	3,281 x 10 ⁻³			
2,2989 x 10 ⁻²	3,048 x 10 ⁻²	4,335 x 10 ⁻¹	2,950 x 10 ⁻²	2,242 x 10	8,827 x 10 ⁻¹	3,048 x 10 ²	1			

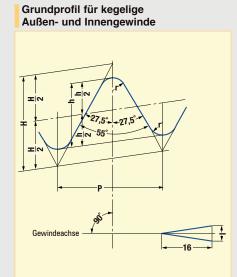
Cupla-Anfrageformular

Wenn Sie einen bestimmten Cupla oder den Typ, der Ihren speziellen Anforderungen entspricht, in diesem Katalog nicht finden können, füllen Sie bitte dieses Formular aus und faxen Sie es an unseren Vertriebspartner in Ihrem Land oder direkt an uns. Wir wählen den für Ihre Anwendung am besten geeigneten Cupla aus und kontaktieren Sie direkt oder über unseren Vertriebspartner.

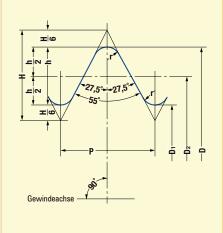
FAX-Blatt

An NITTO KOHKI CO., LTD.

Firmenname	Werk/Niederlassung	
Abteilung/Sektion	Vollständiger Name	
Anschrift	TEL.	
E-Mail	FAX	


Cupla-Nutzuno	gsbedingu	ungen											
Anwendung	(Produkt/N	Vlaschine)	Nan	ne ()	Zu verwe	endende Anzah	I () Stück	
Größe	() Zu	beachten	de Normen oder Gesetz	e, falls vorhand	en ()	Standor	t	Inn	enräume	Auße	nräume	
Produktname	Hi Cupla • S	uper Cupla	• Mold C	upla • SP Cupla Type	A • HSP • 350	• TSP • Min	i Cupla • Ander	re ()	
Gehäusewerkstoff	()	Dichtungsma	aterial	()
Oberflächenbehandlung	()	Häufigkeit d Verbindens/Tre	es ennens	()	Mal/Tag •	() Mal/Mona	it
Ventil	Buchse (mit	• ohne)		Stecker (mit • ohne)									
Fluid	Air • Water	r • Oil •	Steam (A	Andere:)					
Druck	Maximum () MPa	Normalwert () MPa	Minimur	m () MPa	Impuls (m	it • ohne)			
Maximaler Durchfluss	() I/min											
Vakuum	() kPa											
Temperatur	Maximum ()°C	Normalwert () °C	Minimum () °(С					
Gewindeart	Einheitlich Außengev Außengev Auhrengew	winde	de						chlauchstutze rmen oder Ge		vorhande	n (
Sonstige Anforderungen													

Bitte schreiben Sie nicht in den folgenden Bereich.


g	Modell	Dichtungsmaterial	Zeichnungs-Nr.		
erarbeitung	Gehäusewerkstoff	Oberflächenbehandlung			
Verar					

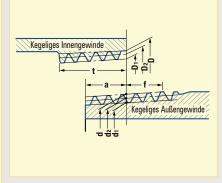

Diese japanische Industrienorm spezifiziert konische Rohrgewinde und gilt für die Gewinde, die hauptsächlich für druckdichte Verbindungen an den Gewinden zum Verbinden von Rohren, Rohrformstücken, Strömungsmaschinen usw. verwendet werden.

Tabelle im Anhang: Grundprofile, Grundmaße und Toleranzen

Grundprofil für parallele Innengewinde

Wie man kegelige Rohrgewinde symbolisiert:

Kegeliges Außengewinde	R 3/8
Kegeliges Innengewinde	Rc 3/8

Eine dicke durchgehende Linie zeigt das Grundprofil.

$$P = \frac{25,4}{n}$$

Eine dicke durchgehende Linie zeigt das Grundprofil.

$$\mathbf{P} = \frac{25,4}{n}$$

$$\mathbf{H} = 0,960491 \text{ P}$$

$$\mathbf{h} = 0,640327 \text{ P}$$

$$\mathbf{r} = 0,137329 \text{ P}$$

Einheit: mm

		Gew	rinde		М	essgeräte	-ø	Lage	der Messe	ebene		Länge des Nutzgewindes (min.)				Größe des	
						ußengewind	lo.	Auton	gewinde	Innengewinde		Außengewinde				Kohlenstoffstahlrohro für normale	
					_ A	uisengewind	E	Ausen	jewinde	innengewinde			Gewi	ständigem ndeteil	Wenn kein		itungen z angegeben)
		Casimuma		Radius		Flankendurchmesser	Kerndurchmesser	vom Roh	rende aus	am	Toleranz bei D, D2 und D1	Von der	Kegeliges Innengewinde	Paralleles Innen- gewinde	unvollständiges Gewindeteil vorhanden ist		
Bezeichnung des Gewindes	Anzahl der Gewinde	Steigung P	Höhe des	r	d	d2	d₁			Innengewindes ±	Lage der Messebene	Von der		Kegeliges Innengewinde/			
	(von 25,4 mm)	(angegeben als Referenz)	Gewindes h	oder r'	I	nnengewind	8	Messlänge	Axiale			in Richtung größerer Durchmesser	Lage der Messebene in Richtung	Vom Ende des Rohres oder der Kupplung I' aus	Paralleles Innengewinde	Außen-ø	Dicke
					Nenndurchmesser D	Flankendurchmesser D 2	Kerndurchmesser D 1				f [kleinerer Durchmesser	(als Referenz angegeben)	Von der Messebene oder vom Ende des Rohres oder der Kupplung aus t			
R 1/8	28	0,9071	0,581	0,12	9,728	9,147	8,566	3,97	0,91	1,13	0,071	2,5	6,2	7,4	4,4	10,5	2,0
R 1/4	19	1,3368	0,856	0,18	13,157	12,301	11,445	6,01	1,34	1,67	0,104	3,7	9,4	11,0	6,7	13,8	2,3
R 3/8	19	1,3368	0,856	0,18	16,662	15,806	14,950	6,35	1,34	1,67	0,104	3,7	9,7	11,4	7,0	17,3	2,3
R 1/2	14	1,8143	1,162	0,25	20,955	19,793	18,631	8,16	1,81	2,27	0,142	5,0	12,7	15,0	9,1	21,7	2,8
R 3/4	14	1,8143	1,162	0,25	26,441	25,279	24,117	9,53	1,81	2,27	0,142	5,0	14,1	16,3	10,2	27,2	2,8
R 1	11	2,3091	1,479	0,32	33,249	31,770	30,291	10,39	2,31	2,89	0,181	6,4	16,2	19,1	11,6	34,0	3,2
R 1 1/4	11	2.3091	1.479	0.32	41.910	40.431	38.952	12,70	2,31	2,89	0,181	6,4	18,5	21,4	13,4	42,7	3,5
R 1 1/2	11	2,3091	1,479	0,32	47,803	46,324	44,845	12,70	2,31	2,89	0,181	6,4	18,5	21,4	13,4	48,6	3,5
R 2	11	2,3091	1,479	0,32	59,614	58,135	56,656	15,88	2,31	2,89	0,181	7,5	22,8	25,7	16,9	60,5	3,8
R 2 1/2	11	2.3091	1.479	0,32	75.184	73,705	72,226	17,46	3,46	3,46	0,216	9,2	26,7	30,1	18,6	76,3	4,2
R 2 1/2	11	2,3091	1,479	0,32	87,884	86.405	84,926	20.64	3,46	3,46	0,216	9,2	29.8	33.3	21,1	89.1	4,2
		_,=00.	.,	-,02	21,001	,.00	1,020	_=/6.	-,		-,2.0	3,2		- 5/6			.,_
R 4	11	2,3091	1,479	0,32	113,030	111,551	110,072	25,40	3,46	3,46	0,216	10,4	35,8	39,3	25,9	114,3	4,5
R 5	11	2,3091	1,479	0,32	138,430	136,951	135,472	28,58	3,46	3,46	0,216	11,5	40,1	43,5	29,3	139,8	4,5
R 6	11	2,3091	1,479	0,32	163,830	162,351	160,872	28,58	3,46	3,46	0,216	11,5	40,1	43,5	29,3	165,2	5,0

Austauschbarkeit der Hi Cupla-Serie

Folgende Stecker und Buchsen können miteinander verbunden werden

	Stecker					
Тур	Modell					
Hi Cupla	17PH, 20PH, 30PH, 40PH 10PM, 20PM, 30PM, 40PM 20PF, 30PF, 40PF 20PFF 60PC, 80PC, 100PC 90PN-BH					
Anti-vibration Plug Hose	SHA-3-2R, SHA-3-3R					
Nut Cupla	50PN (10PAH), 60PN (20PAH), 65PN 80PN (30PAH), 110PN (40PAH) 50PNG, 65PNG, 85PNG					
Hi Cupla Ace	20PH-PLA, 30PH-PLA 20PM-PLA, 30PM-PLA 50PN-PLA, 60PN-PLA, 65PN-PLA, 80PN-PLA, 85PN-PLA 20PFF-PLA 50PNG-PLA, 65PNG-PLA, 85PNG-PLA					
Rotary Plug	RL-20PM, RL-30PM RL-20PFF					
Twist Plug	TS-10PM, TS-20PM, TS-30PM TS-20PFF					
Purge Plug	PV-20PH, PV-30PH, PV-40PH PV-65PN, PV-85PN					
NK Cupla Hose	NKU-605B, NKU-610B, NKU-620B NKU-810B, NKU-820B	(HA-65PNG) (HA-85PNG)				
NK Cupla Coil Hose	NKC-503B, NKC-505B NKC-603B, NKC-605B	(HA-50PNG) (HA-65PNG)				
Rotary Line Cupla	RT Type (Einlassöffnung)					
Line Cupla 200	200T Type (Einlassöffnung)					
Rotary Full-Blow Line Cupla	FBH-RT Type (Einlassöffnung)					
Hi Cupla Ace	HA-T Type (Einlassöffnung)					

Kann miteinander verbunden werden

Buc	hse				
Modell		Тур			
17SH, 20SH, 30SH, 40SH 10SM, 20SM, 30SM, 40SM 20SF, 30SF, 40SF 90SN-BH		Hi Cupla			
20SH-BL, 30SH-BL, 40SH-BL 20SM-BL, 30SM-BL, 40SM-BL 20SF-BL, 30SF-BL, 40SF-BL 65SN-BL, 80SN-BL, 85SN-BL		Hi Cupla BL			
TW20SH, TW30SH, TW40SH TW20SM, TW30SM, TW40SM TW20SF, TW30SF, TW40SF	Hi Cupla TW Type				
200-17SH, 200-20SH, 200-30SH, 200-40 200-20SM, 200-30SM, 200-40SM 200-20SF, 200-30SF, 200-40SF 200-60SC, 200-80SC, 200-100SC	DSH	Hi Cupla 200			
FBH-20SH, FBH-30SH, FBH-40SH FBH-20SM, FBH-30SM, FBH-40SM FBH-20SF, FBH-30SF, FBH-40SF FBH-65SN, FBH-80SN, FBH-85SN, FBH-	110SN	Full-Blow Cupla			
50SN (10SAH), 60SN (20SAH), 65SN 80SN (30SAH), 85SN, 110SN (40SAH)	Nut Cupla				
200-50SN, 200-60SN, 200-65SN, 200-86 200-85SN, 200-110SN 200-50SNG, 200-65SNG, 200-85SNG	OSN	Nut Cupla 200			
65SNR, 85SNR 65SNRG, 85SNRG		Rotary Nut Cupla			
DCS-20PH, DCS-30PH, DCS-40PH DCS-65PNG, DCS-85PNG		Duster Cupla			
L200-20SH, L200-30SH, L200-40SH L200-20SM, L200-30SM, L200-40SM L200-20SF, L200-30SF, L200-40SF L200-65SNRG, L200-85SNRG		Lock Cupla 200			
PV-20SM, PV-30SM, PV-40SM		Purge Hi Cupla			
RT Type, RE Type		Rotary Line Cupla			
200T Type, 200L Type, 200S Type	Line Cupla 200 Rotary Full-Blow Line Cupla				
FBH-RE Type, FBH-RT Type HA-20SH, HA-30SH HA-20SM, HA-30SM, HA-50SN, HA-60S HA-65SN, HA-80SN, HA-85SN HA-T HA-50SNG, HA-65SNG, HA-85SNG	Hi Cupla Ace				
NKU-605B, NKU-610B, NKU-620B	NIK O. I. II				
NKU-810B, NKU-820B	(HA-65SNG) (HA-85SNG)	NK Cupla Hose			
NKC-503B, NKC-505B	NK Cupla Coil Hose				

Stecker					
Тур	Modell				
Hi Cupla	400PH, 600PH, 800PH 400PM, 600PM, 800PM 400PF, 600PF, 800PF				
Line Cupla 200	200L Type (Einlassöffnung) 200S Type (Einlassöffnung)				

Kann miteinander verbunden werden

Buchse	
Modell	Тур
400SH, 600SH, 800SH	
400SM, 600SM, 800SM	Hi Cupla
400SF, 600SF, 800SF	
PV-400SM, PV-600SM	Purge Hi Cupla
PVR-400SH, PVR-600SH, PVR-800SH	Purge Hi Cupla PVR Type
PVR-400SM, PVR-600SM, PVR-800SM	
PVR-400SF, PVR-600SF, PVR-800SF	

Produktionsstätten, die unsere Produktqualität sichern

Große Produktionsanlagen in der Präfektur Tochigi, Japan, und in Ayutthaya, Thailand, mit der Kapazität zur flexiblen Massenproduktion, sind rund um die Uhr in Betrieb und bilden ein komplettes, hochwertiges Liefersystem, von der Bearbeitung der Komponenten bis zur Montage und Prüfung der Fertigprodukte. Dieses System steht immer bereit und kann auf das Vertrauen unserer Kunden bauen.

Produktionsstätten sichern flexibles Versorgungssystem

TOCHIGI NITTO KOHKI CO., LTD.

Herstellung von Cuplas sowie von linear-motorisch angetriebenen Kolbenpumpen und deren Anwendungen

Das Tochigi Nitto Kohki-Werk ist nach ISO 14001 und 9001 zertifiziert.

JQA-EM4057

Im November 1995 verlieh die japanische Qualitätssicherungsbehörde (Japan Quality Assurance Foundation), die Behörde für Inspektion und Registrierung, Tochigi Nitto Kohki die Zertifizierung nach "ISO 9001" für Qualitätskontrolle und Qualitätssicherung bei der Herstellung von Cupla-Produkten (Schnellkupplungen) sowie von 1 kW- und kleineren linear-motorisch angetriebenen Luftkompressoren, Vakuumpumpen angewandten Produkten, und im November 2001 die Zertifizierung nach "ISO 14001", ebenfalls eine Auszeichnung Internationalen Standards für Umweltmanagementsysteme, der Umwelterhaltung globalen und dem Umweltschutz dienen.

NITTO KOHKI INDUSTRY (THAILAND) CO., LTD.

Herstellung von Cuplas, Luftkompressoren und Vakuumpumpen

ISO 14001 und 9001

NITTO KOHKI INDUSTRY (THAILAND) CO., LTD. ist nach ISO 14000 und ISO 9001 zertifiziert.

Von der Entwicklung bis zur Produktion, Verwaltung und Vermarktung von "Cuplas"

Nitto Kohki hat das "integrierte Produktsicherungssystem" eingeführt, das durch die Abdeckung der Bereiche Entwicklung, Qualitätskontrolle, Produktion und Marketing zeitnah auf "Anwenderbedürfnisse" reagieren kann, um die Versorgung mit qualitativ hochwertigen "Cuplas" sicherzustellen.

Das integrierte Produktsicherungssystem von Nitto Kohki

Forschung und Entwicklung

Die Bedürfnisse der Zeit sowie aktuelle Informationen werden gesammelt und analysiert. Außerdem werden einzigartige Technologien genutzt, um Herausforderungen bei der ständigen Entwicklung von besseren Cuplas zu meistern, d. h. von Cuplas, die für ganz neue Anwendungen geeignet sind.

Hauptsitz und Labor für Forschung und Entwicklung

Qualitätskontrolle

Die sorgfältige Auswahl der Materialien, Streben nach einer hohen Bearbeitungspräzision sowie Überwachungsverfahren, u. a. Dauertests. haben unseren Cuplas als Weltmarke Vertrauen eingebracht.

Produktion

Ein hochwertiges, rationelles und integriertes Produktionssystem reicht Bearbeitung der Teile bis zur Montage und Prüfung der fertigen Produkte. Unsere einzigartigen Roboter, die wir für unsere Anlagen sowie für viele andere hochmoderne Anlagen herstellen, haben eine erstaunliche Kapazität für die Massenproduktion. Mit ihnen allen möchten wir ein flexibles Versorgungssystem aufbauen.

Das Tochigi Nitto Kohki-Werk ist nach ISO 14001 und 9001 zertifiziert.

Marketing

Unsere sorgfältigen Marketingaktivitäten umfassen Werbung in der allgemeinen Fachpresse und in Fachzeitschriften, nationale und lokale Ausstellungen, Schulungen, Kataloge, Werbevideos, weitere Präsentationstools und technische Datenblätter für Neueinführungen sowie einzigartige und dennoch dynamische Kampagnen.

Nitto Kohkis arbeitserleichternde Produkte

Nitto Kohki erfasst die Bedürfnisse der Anwender, indem das Unternehmen nicht nur "Cuplas"-Schnellkupplungen, sondern auch arbeitssparende Geräte der nächsten Generation, darunter verschiedene "Werkzeugmaschinen und Handwerkzeuge", hochpräzise "Delvo"-Elektroschrauber und linear-motorisch angetriebene "Kompressoren/Vakuumpumpen", auf den Markt bringt.

Die Qualitätsprodukte von Nitto Kohki

Maschinen und Werkzeuge zur Energie- und Arbeitsersparnis in der Verarbeitung

Maschinen und Werkzeuge werden an verschiedenen Bearbeitungsstandorten zum Schneiden, Polieren, Zundern, Bohren und Anfasen von Stahlwerkstoffen eingesetzt. Wir haben eine Produktpalette von pneumatischen, elektrischen und hydraulischen Maschinen und Werkzeugen geschaffen, die der Diversifizierung der Verarbeitungsmethoden und den Bedingungen der Arbeitsprozesse entspricht.

Hochpräzise "Delvo" Electric Screwdrivers für den professionellen Einsatz

"delvo" Electric Screwdrivers von NITTO KOHKI sind hochwertige Werkzeuge für den professionellen Einsatz mit besonderem Augenmerk auf präzise Drehmomentsteuerung und lange Lebensdauer. Sie wenden genau den richtigen Drehmoment anund sind verlässlich und sicher immer zur Hand. Auch im Einsatz sind sie leichtgängig und stoßfrei.

Verdichter, Vakuumpumpen und Produkte, in denen sie eingesetzt werden

Pumpen von NITTO KOHKI sind einzigartige Produkte mit einem linear-motorischen Freikolbensystem. NITTO KOHKI hat eine komplette Serie von Luftkompressoren und Saugpumpen mit diesem einzigartigen funktionalen Design auf den Markt gebracht. Diese sind als Luftquellen oder Saugaggregate für verschiedene pneumatisch betriebene Geräte und Apparate in der modernen Industrie sehr gut geeignet.

Sicherheitsleitfaden

Sicherheitsvorkehrungen

Die Sicherheitsvorkehrungen enthalten Anweisungen für den sicheren Gebrauch von Nitto Kohki-Cuplas, um die potenzielle Gefahr von Verletzungen oder Schäden an umliegenden Gegenständen zu vermeiden. Die Sicherheitsvorkehrungen sind in die Rubriken "Gefahr", "Warnung" und "Vorsicht" eingeteilt, je nach dem Grad der möglichen Gefährdung für Leib und Leben oder der umliegenden Gegenstände, wenn die Cuplas falsch verwendet werden. Sie umfassen alle wichtigen Sicherheitshinweise und müssen beachtet werden, ebenso wie die internationalen Normen #1 und andere lokale Sicherheitsvorschriften #2.

#1: ISO 4413, Hydraulische Fluidtechnik – Allgemeine Regeln für Systeme #2: Arbeitsschutzrecht (Beispiel)

ISO 4414, Pneumatische Fluidtechnik - Allgemeine Regeln für Systeme

unmittelbar Kennzeichnet drohende eine Gefahrensituation, die, wenn sie nicht vermieden wird, zu schweren Verletzungen oder gar zum Tod führt.

Kennzeichnet eine potenziell gefährliche Situation, WARNUNG die, wenn sie nicht vermieden wird, zu schweren Verletzungen oder gar zum Tod führen kann.

Kennzeichnet eine potenziell gefährliche Situation, die, wenn sie nicht vermieden wird, zu Personen- oder Sachschäden führen kann.

AGEFAHR

Stellen Sie die Benutzung des Cuplas sofort ein, wenn eine Gefahr für den Betrieb oder eine verminderte Sicherheit zu erwarten ist.

MARNUNG

Die beigefügten Sicherheitshinweise sind nur eine Richtlinie. Bei der Verwendung von Nitto Kohki-Cuplas ist besonders auf mögliche Gefahrensituationen für die Anwendung zu achten, die nicht in den Sicherheitshinweisen aufgeführt sind.

Vorsicht bei der Auswahl von Cuplas

- Der Anschluss an eine Kupplung einer anderen Marke kann zu fehlerhaftem An- oder Abkuppeln, verminderter Luftdichtigkeit, verminderter Druckfestigkeit oder Haltbarkeit, vermindertem Volumenstrom und möglicherweise zu einem unerwarteten Unfall führen und muss daher vermieden werden. Nitto Kohki kann keine Haftung für Unfälle übernehmen, die durch eine gemischte Nutzung mit der Kupplung einer anderen Marke entstehen können. Bitte achten Sie bei der Bestellung und beim Kauf auf unsere Kennzeichnungen am rechten Rand dieser Seite, die immer auf Nitto Kohki-Cupla-Produkten zu finden
- Verwenden Sie Cuplas nicht unter anderen Bedingungen und in anderen Umgebungen als im Katalog angegeben

/ WARNUNG

- Bitte konsultieren Sie uns vor der Anwendung, wenn Cuplas für den Einsatz an Maschinen, Geräten oder Systemen (im Folgenden "Geräte, Systeme usw." genannt) zur Erhaltung oder Überwachung des menschlichen Lebens bzw. Körpers benötigt werden.
- · Bei der Verwendung von Cuplas zur Gewährleistung der Sicherheit konsultieren Sie uns bitte vorher.
- Die Kompatibilität des Produkts mit bestimmten Geräten, Systemen usw. muss von der Person bestimmt werden, die die Geräte, Systeme usw. entwirft, oder von der Person, die die Spezifikationen aufgrund der erforderlichen Analyse und des Testergebnisses festlegt. Die erwartete Leistung und die Sicherheit der Geräte, Systeme usw. liegt in der Verantwortung der Person, die die Kompatibilität mit
- · Wenn Cuplas für die folgenden Anwendungen verwendet werden sollen, sprechen Sie uns bitte an
- Fahrzeuge, Flugzeuge und zugehörige Ausrüstungssysteme, die Menschen an Bord aufnehmer
- Medizinische Einrichtungen oder Absauggeräte mit unmittelbarer Wirkung auf den menschlichen Körper
- Geräte, die direkt mit Lebensmitteln, Arzneimitteln bzw. Medikamenten oder Trinkwasser in Berührung kommen und diese Substanzen handhaben, sowie Kernenergieanlagen oder Sicherheitseinrichtun-
- Die Wahl des falschen Dichtungsmaterials kann zu Leckagen führen. Bitte prüfen Sie bei Ihrer Auswahl die Verträglichkeit des Dichtungsmaterials mit der Art des Fluids und der Temperatur der Anwendung.
- Bitte konsultieren Sie uns vor der Auswahl oder Verwendung von Cuplas, wenn diese für den Einsatz mit korrosiven oder brennbaren Gasen/Flüssigkeiten und/oder in Atmosphären dieser Art von Gasen und Flüssigkeiten vorgesehen sind.

Garantie und Haftungsausschluss

Für Mängel an unseren Produkten haften wir wie folgt:

- Für Konstruktions-, Material- und Verarbeitungsfehler unserer Produkte haften wir, wenn sich herausstellt, dass diese Mängel ausschließlich auf Gründe zurückzuführen sind, die wir zu vertreten haben.
- Unsere Haftung beschränkt sich auf eine der folgenden, von uns festgelegten Optionen:
- (a) Reparatur der fehlerhaften Produkte oder von Teilen von ihnen,
- (b) Ersatz der fehlerhaften Produkte oder von Teilen von ihnen: oder
- (c) Entschädigung für Verluste und Schäden, die Ihnen entstanden sind und die in keinem Fall den Betrag Ihres Kaufpreises für die fehlerhaften Produkte übersteigen darf.
- · Wir haften in keinem Fall für spezielle, indirekte oder Folgeschäden, unabhängig davon, ob es sich um Schäden handelt, die durch Arbeitsausfall, Beeinträchtigung anderei Güter oder Körperverletzung oder Todesfälle entstehen.

Leistung, Abmessungen und ihre Einschränkungen

Bitte beachten Sie, dass die Arbeitsdiagramme und Außenabmessungen in diesem Katalog keine in der Massenproduktion vorkommenden Toleranzen berücksichtigen. Die Informationen sind Durchschnittswerte, dienen als Leitfaden für die Auswahl der Modelle und ermöglichen eine technische Beurteilung durch die Anwender.

Vorsicht vor gefälschten Produkten

In letzter Zeit sind ähnliche Produkte auf dem Markt aufgetaucht, die zu Fehlidentifizierungen oder Verwechslungen mit Cuplas von Nitto Kohki führen können.

- Bei Anschluss eines solchen ähnlichen Produkts an einen Cupla von Nitto Kohki kann es zu folgenden Problemen kommen 1. Unvollständige Verbindung oder Trennung
- 2. Reduzierte Luftdichtigkeit
- 3. Beeinträchtigte Druckfestigkeit oder Haltbarkeit
- 4. Reduzierter Volumenstrom

Dies könnte außerdem zu unerwarteten Unfällen führen.

Daher sollten lediglich Verbindungen mit Cuplas von Nitto Kohki hergestellt werden. Bitte achten Sie bei der Bestellung und beim Kauf auf unsere Originalprodukt-Kennzeichnungen am rechten Rand dieser Seite, die immer auf Nitto Kohki-Cupla-Produkten zu finden sind

Nitto Kohki übernimmt keine Haftung für Unfälle, die durch die Verwendung von Kupplungen anderer Marken in Verbindung mit Nitto Kohki-Kupplungen entstehen können.

Sicherheitsleitfaden

Die folgenden Vorsichtsmaßnahmen müssen bei der Verwendung von Cuplas getroffen werden. Bitte kontaktieren Sie Nitto Kohki oder den Händler/Lieferanten, bei dem Sie das Produkt gekauft haben, hinsichtlich der Reparaturverfahren, der Zertifizierung der Spezifikationen oder der Anwendungen der Produkte.

⚠ Vorsichtsmaßnahmen bei der Verwendung von Cuplas

Lesen Sie vor Gebrauch unbedingt die dem Produkt beiliegende "Gebrauchsanweisung" oder den "Vorsichtshinweis" auf der Verpackung.

Cuplas für Niederdruck (Luft)

⚠ Vorsicht

- Die Lebensdauer des Cuplas hängt von der Betriebsumgebung und den Bedingungen (Druck und Temperatur usw.) ab. Führen Sie bei Bedarf eine Leistungsbewertung unter Ihren tatsächlichen Betriebsbedingungen durch

- Die Lebensdauer des Cuplas hängt von der Betriebsumgebung und den Bedingungen (Druck und Temperatur usw.) ab. Führen Sie bei Bedarf eine Leistungsbewertung unter Ihren tatsächlichen Betriebsbedingungen durch.

 Außerdem kann eine Spannungsrisskorrosion bei Verwendung in korrosiver Umgebung auftreten. Beachten Sie die Nutzungsbedingungen.

 Der Betriebsbedingungvon Cuplas muss darauf geachtet werden, dass kein Material verwendet wird, das die Dichtungs- und Gehäusewerkstoffe beeinrtächtigt.

 Bei der Reinigung von Cuplas muss darauf geachtet werden, dass kein Material verwendet wird, das die Dichtungs- und Gehäusewerkstoffe beeinrtächtigt.

 Ein Dichtband aus Fluorpolymerhar zu die konsischen Außengewinde der Rohre unttragen, um eine Leckage zu verwendenden Schlauch. Vergewissern Sie sich vor dem Gebrauch, dass die Temperatur und der Typ des zu verwendenden Fluids für den Schlauch geeignet sind.

 Bei der Reinigung von Cuplas muss darauf geachtet werden, dass kein Material verwendet wird, das die Dichtungs- und Gehäusewerkstoffe beeinrtächtigt.

 Bei der Montage von Cuplas ist darauf zu achten, dass das Gewinder nicht zu fest angezogen oder verkantet wird, da dies zu Beschädigungen und Leckagen führen kann. (Gilt für Gewindetyp, Nut-Typ, insbesondere das Gehäusematerial: Edelstahl)

 Verwenden Sie nichts anderes als die entsprechenden Schlauch- bzw. Rohrgrößen. Anderenfalls kann es zu Undichtigkeiten kommen. (Gilt für Schlauch- bzw. Verbindungstyp)

 Stecken Sie den Stutzen (das Endstück), (Gilt für Schlauch- bzw. Rohrgrößen. Anderenfalls kann es zu Undichtigkeiten kommen. (Gilt für Schlauch- bzw. Rohranschluss-Verbindungstyp)

 Schlagen Sie niemals auf den Cupla, wenn Sie den Stutzen (das Endstück) in den Schlauch bzw. das Rohr in der vorgesehenen Länge vom Ende ab, wenn Sie ihn bzw. es wiederverwenden. Anderenfalls kann es zu Leckagen oder zum Bersten des Schlauch- bzw. Rohranschluss-Verbindungstyp)

 Schneiden Sie den Schlauch bzw. des Rohr in der vorgesehenen Länge vom Ende ab, wenn Sie ihn bzw. es wiederverwenden. An
- Nach der Installation des Cuplas vor dessen Gebrauch immer eine Dichtheitsprüfung durchführen.
- Versuchen Sie nach dem Anschluss, die Buchse und den Stecker auseinander zu ziehen, um sich von der sicheren Verbindung zu überzeugen. Ist die Verbindung unvollständig, können sich Buchse und Stecker unter Druck lösen.

 Gehen Sie beim Temenn von Cuplas unter Druck vorsichtig vor. Um Verletzungen durch Herausspringen des Steckers zu vermeiden, sollte der Cupla in der einen Hand und der Stecker in der anderen Hand gehälten werden.

 Wenn es sich bei dem Medium um ein Gas handelt, kann es beim Tennen zu einem hörbaren Knall kommen. Wir empfehlen, diesen Cupla im drucklosen Zustand zu trennen. (Ausgenommen Cuplas mit Spülfunktion)

- Wenn es sich bei dem Medium um ein Gas handelt, kann es beim Trennen zu einem hörbaren Knall Kommen. Wir empfehlern, diesem Cupla im drucktosen Zustand zu trennen (Ausgenommen Cuplas mit Spüffunktion)

 Setzen Sie nach dem Trennen eine vorgesehene Staubschutzkappe auf den Cupla, wenn die Möglichkeit besteht, dass Fremdkörper wie z. B. Schmutz an der Dichtungsoberfläche haften bleiben.

 Bauen Sie immer ein Absperventil zwischen Druckquelle und Cupla ein.

 Nicht mit anderen als den angegebenen Fluids oder Medien verwenden, da dies zu Undichtigkeiten oder Schäden führen kann.

 Der Einsatz von Inline-Filter mit dridripend empfohlen. Um Schäden zu vermeiden, sollte das Fluid vor Erreichen des Cuplas sauber sein.

 Lassen Sie das Fluid immer von der Buchse zum Stecker fließen. Anderenfalls kommt es zu einem reduzierten Volumenstrom. (Ausgenommen Hi Cupla Two Way Type.)

 Verwenden Sie Cuplas inicht in Bereichen oder Umgebungen, in denen Staub wie Sand oder Metallpulver in die Cuplas gelangen kann. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.

 Lassen Sie keinen Lack am Cupla anhaften. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.

 Achten Sie darauf, dass Sie den Cupla inicht verkratzen oder eindellen. Insbesondere Kratzer an den Dichtungstellen führen zu Undichtigkeiten.

 Achten Sie darauf, dass Sie den Cupla nicht verkratzen oder eindellen. Insbesondere Kratzer an den Dichtungstellen führen zu Undichtigkeiten.

 Keine künstlichen Stöße, Biegenugen oder Spannungen anwenden. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

 Lassen Sie den Cupla nicht tallen. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

 Das direkte Anschließen von Cuplas an vibrierende oder schlägende Geräte führt zu einer verkürzten Lebensdauer. Die Verwendung eines ca. 30 cm langen "Führungsschlauchs" oder einer "Schlauchpeitsche" zwischen Cupla und Gerät wird empfohlen, um dies zu lindern.

 Nur als Schneiben von Cuplas an vibrierende oder schlägende Geräte führt zu ei
- · Nur als Schnellkupplungen für Fluidleitungen verwenden. (Die Verwendung als Drehgelenk ist nicht möglich.)
- Verwenden Sie Cuplas nur in Kombination mit Cuplas von Nitto Kohki.
- Cuplas nicht zerlegen. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen

Vorsichtsmaßnahmen bei der Handhabung von Cupla-Schläuchen

- Verwenden Sie Cuplas nicht kontinuierlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

 Verwenden Sie nur Cuplas, die innerhalb ihres Nenntemperaturbereich siegen. Anderenfalls wird der Schlauch beschädigt oder abgenutzt und verursacht Leckagen. Ein Cupla kann nicht kontinuierlich bei seiner niedrigsten oder höchsten Betriebstemperatur eingesetzt we
 Nicht bei Systemen mit hohem Wassergehalt, wie z. B. einem Abfluss, verwenden, da dies den Schlauch beschädigen kann.

 Die Lebensdauer des Schlauchs hängt von der Betriebsumgebung und den Bedingungen (Druck und Temperatur usw.) ab. Führen Sie bei Bedarf eine Leistungsbewertung unter Ihren tatsächlichen Betriebsbedingungen durch.
- Vergewissern Sie sich, dass der Schlauch vor Gebrauch nicht verdreht oder verbogen ist.
- · Vergewissem sie sich, dass der Schauch vor Gebrauch nicht vergrent oder Verbogen ist.

 Die maximal ausgehähere Länge darf nicht überschritten werden, da sonst der Schlauch beschädigt wird. Siehe Katalogseite für weitere Informationen. (Gilt für NK Cupla coil hose.)

 Biegen Sie den Schlauch nicht unter den Mindestbiegeradius. Anderenfalls wird der Schlauch beschädigt. (o6,5 x e10 mm Mindestbiegeradius: 40 mm, e8,5 x e12,5 mm Mindestbiegeradius: 50 mm; Gilt für NK Cupla-Schlauch)
- Verwenden Sie keine anderen Fluids oder Medien als die angegebenen, um den Schlauch nicht zu beschädigen.
 Der Einsatz von linine-Filtern wird dringend empfohlen. Um Schäden zu vermeiden, sollte das Fluid vor Erreichen des Cuplas sauber sein. Wenn Fremdkörper in das Fluid eindringen, kann der Schlauch beschädigt werden.
 Verwenden Sie Cuplas nicht in Bereichen oder Umgebungen, in denen Staub wie Sand oder Metallpulver in die Cuplas gelangen kann. Anderenfalls kann der Schlauch beschädigt werden.
 Nicht in der Nähe von offenem Feuer verwenden. Anderenfalls kann der Schlauch erweicht oder verformt und in der Folge beschädigt werden.

- Nicht in der Nahe von oftenem Heuer verwenden. Anderenfalls kann der Schlauch erweicht oder verformt und in der Folge beschädigt werden.
 Achten Sie darauf, den Schlauch nicht zu beschädigen, wenn er beim Transportieren über unebenem Boden oder Beton gezogen wird. Wichtig ist auch, dass der Schlauch nicht über längere Zeit geknickt oder gequetscht wird.
 Nicht zum Anheben oder Hochziehen verwenden; dies kann den Schlauch beschädigen.
 An einem schaftigen, trockenen und gut belititeten Ott aufbewahren.
 Beil Wiedervenwendung den Schlauch mindsetens 3 om vom Ende abschneiden. Anderenfalls kann der Schlauch auslaufen oder platzen.
 Nach der Installation des Cuplas vor dessen Gebrauch immer eine Dichtheitsprüfung durchführen.

Cupla für Sauerstoff / Brenngas

- Nicht mit anderen als den angegebenen Fluids oder Medien verwenden, da dies zu Undichtigkeiten oder Schäden führen kann.

 Verwenden Sie Cuplas nicht kontinuierlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

 Ersetzen Sie den Cupla durch einen neuen, wenn es zu einer Rückzündung kommt. Rückzündungen beschädigen das Gehäuse und die Dichtung und führen zu Leckagen oder Schäden.

 Verwenden Sie keine beschädigten (rissigen) oder abgenutzten Schläuche. Anderenfalls kommt es zu undichtigkeiten oder zum Platzen von Schläuchen. (Gilt für Schlauchstutzen.)

 Lassen Sie niemals OI am Cupla anhaften, wenn Sie einen Schlauch installieren. Anderenfalls kommt es zu einer Selbstentzündung.

 Stecken Sie den Stutzen (das Endstück) vollständig in einen Schlauch und sichern Sie ihn mit einer Schlauchschelle oder einer Mutter. Unvollständiges Einsetzen oder ungenügende Klemmung führt zum Auslaufen oder Abrutschen eines Schlauchs oder Rohrs vom Stutzen (Endstück) (die für Schlauchstutzen.) (Endstück). (Gilt für Schlauchstutzen.)
- Nach der Installation des Cuplas vor dessen Gebrauch immer eine Dichtheitsprüfung durchführen. Vor Gebrauch immer auf Leckagen an Cuplas prüfen. Wird eine Leckage festgestellt, ist die Anwendung sofort einzustellen
- Bei Wiederverwendung den Schlauch mindestens 3 cm vom Ende abschneiden. Anderenfalls kann der Schlauch unsalaufen oder platzen. (Gilt für Schlauchstutzen.)

 Verwenden Sie den Cupla nicht in der Nähe von öffenem Feuer oder an Orten, an denen sich Gas ansammelt. Anderenfalls kommt es zu einem Brand oder einer Explosion.

 Stellen Sie sicher, dass das Vernül am Brenner geschlossen ist, bevor Sie ihn an den Cupla anschließen. Bei geöffnetem Ventil fließt das Gas aus und kann einen Brand oder eine Explosion verursachen.

 Cuplas nicht zerlegen. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

⚠ Vorsicht

- · Verwenden Sie nur Cuplas, die innerhalb ihres Nenntemperaturbereichs liegen. Anderenfalls kann es zu Undichtigkeiten durch Abnutzung oder Beschädigung der Dichtung kommen. Ein Cupla kann nicht kontinuierlich bei seiner niedrigsten oder höchsten Betriebstemperatur
- eingesetzt werden.

 Die Lebensdauer des Cuplas hängt von der Betriebsumgebung und den Bedingungen (Druck und Temperatur usw.) ab. Führen Sie bei Bedarf eine Leistungsbewertung unter Ihren tatsächlichen Betriebsbedingungen durch.

- Schlagen Sie niemals auf den Cupla, wenn Sie den Stutzen (das Endstück) in den Schlauch einführen. Anderenfalls komnt dies zu einer schlechten Verbindung führen. (Gilt für Schlauchstutzen.)
 Verwenden Sie keine beschädigten (rissigen) oder abgenutzten Schläuche. Anderenfalls kommt es zu Undichtigkeiten oder zum Platzen von Schläuchen. (Gilt für Schlauchstutzen.)
 Versuchen Sie nach dem Anschluss, die Bruchse und den Stecker auseinander zu ziehen, um sich von der sicheren Verbindung zu überzeugen. Ist die Verbindung unvollständig, können sich Buchse und Stecker unter Druck lösen.
 Gehen Sie beim Trennen von Cuplas unter Druck vorsichtig vor. Um Verletzungen durch Herausspringen des Steckers zu vermeiden, sollte der Cupla in der einen Hand und der Stecker in der anderen Hand gehalten werden.
 Wenn es sich bei dem Medium um ein Gas handelt, kann es beim Trennen zu einem hörbaren Knall kommen. Wir empfehlen, diesen Cupla im drucklosen Zustand zu trennen.
 Bauen Sie immer ein Absperventil zwischen Druckquelle und Buchse ein.
 Der Einsatz von Inliner-Filtem wird dringend empfohlen. Um Schäden zu vermeiden, sollte das Fluid vor Erreichen des Cuplas sauber sein.
 Lassen Sie das Fluid immer von der Buchse zum Stecker fließen. Anderenfalls kommt es zu einem reduzierten Volumenstrom.
 Verwenden Sie Cuplas nicht in Bereichen oder Umgebungen, in denen Staub wie Sand oder Metallejuhver in die Cuplas in der Bereichen oder Umdichtigkeiten.
 Lassen Sie keinen Lack am Cupla anhaften. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.
 Letten Sie der Gerund der Sie den Gerund in den Sie oder Under Aus der Siehtungstellen führen zu Undichtigkeiten.

- Lassen Sie keinen Lack am Cupia annatien. Anderentalis kommt es zu Fehltunktionen oder Undichtigkeiten Achten Sie darunt, dass Sie den Cupia nicht verkratzen oder eindellen. Insbesondere Kratzer an den Dichtungstellen führen zu Undichtigkeiten.
 Keine künstlichen Stöße, Biegungen oder Spannungen anwenden. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
 Lassen Sie den Cupia nicht fallen. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.
 Das direkte Anschließen von Cupias an vibrierende oder schlagende Geräte führt zu einer verkürzten Lebensdauer.
 Nur als Schnellikupplungen für Fluidleitungen verwenden. (Die Verwendung als Drehgelenk ist nicht möglich.)
 Verwenden Sie Cupias nur in Kombination mit Cupias von Nitto Kohki.

- · Lagern Sie Cuplas in einer trockenen Umgebung. Feuchtigkeit verursacht Korrosion und kann bei niedrigen Temperaturen auch einfrieren, was zu Fehlfunktionen des Cuplas oder anderer Geräte führen kann.

🛕 Vorsichtsmaßnahmen bei der Verwendung von Cuplas

Lesen Sie vor Gebrauch unbedingt die dem Produkt beiliegende "Gebrauchsanweisung" oder den "Vorsichtshinweis" auf der Verpackung.

Mold Cupla / Flow Meter / Hot Water Cupla

⚠ Warnung

- Uben Sie keinen Druck auf eine Cupla-Buchse aus, während diese abgeklemmt ist. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
 Verwenden Sie Cuplas nicht kontinuierlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
 Das Fluid in der Rohrleitung an der Steckerseite tritt beim Trennen aus. Bei Verwendung für gefährliche Fluids (z. B. heiße Fluids) lassen Sie das gesamte Fluid im Inneren des Cuplas vor dem Trennen ab, um Verbrennungen usw. zu vermeiden. (Gilt für Mold Cupla.)

- Vor dem Einsatz ist die Verträglichkeit des Dichtungs- und Gehäusewerkstoffs mit der Temperatur und des zu verwendenden Fluids zu prüfen. Die Wahl des falschen Dichtungsmaterials führt zu Leckagen.

 Bei der Verwendung von Speziallacken oder Lösungsmitteln ist auf die Materialverträglichkeit zu achten.

 Verwenden Sie nur Cuplas, die innerhalb ihres Nenntemperaturbereichs liegen. Anderenfalls kann es zu Undichtigkeiten durch Abnutzung oder Beschädigung der Dichtung kommen. Ein Cupla kann nicht kontinuierlich bei seiner niedrigsten oder höchsten Betriebstemperatur
- Selbst bei Einsatz innerhalb des Nennbetriebstemperaturbereichs führt ein längerer Gebrauch des Flow Meters unter Druck und mit einer Temperatur in den oberen Bereichen zu Leckagen. (Dies gilt besonders, wenn das Ventil vollständig geöffnet ist.)
- Die Lebensdauer des Cuplas oder des Flow Meters h\u00e4ngt von der Betriebsum\u00e3ebung und den Bedingungen (Druck und Temperatur usw.) ab. F\u00fchren Sie bei Bedarf eine Leistungsbewertung unter Ihren tats\u00e4chlichen Betriebsbedingungen durch.
 Außerdem kann eine Spannungsrisskorrosion bei Verwendung in korrosiver Umgebung auftreten. Beachten Sie die Nutzungsbedingungen.
- druck- und der Betriebstemperaturbereich für Schlauchanschlusstypen ist abhängig vom zu verwendenden Schlauch, Vergewissem Sie sich vor dem Gebrauch, dass die Temperatur und der Typ des zu verwendenden Fluids für den Schlauch geeignet sind. (Gilt für Mold Cupla.)

- (Gift tur Mold Cupia.)
 Stellen Sie sicher, dass O-Ringe und Packungsdichtungen stets mit Schmiermittel geschmiert sind. Anderenfalls werden die O-Ringe beschädigt und verursachen Leckagen.
 Ein Dichtband aus Fluorpolymerharz auf die konischen Außengewinde der Rohre auftragen, um eine Leckage zu vermeiden. (Gilt für Mold Cupia Gewindetyp oder Flow Meter.)
 Das empfohlene maximale Drehmoment beim Einschrauben in das Außen- oder Innengewinde eines Cupias für den Einbau nicht überschreiten. Anderenfalls kann es zu Beschädigungen kommen.
 Beim Einbau des Flow Meters ist zum Schutz der Kugelfläche der Kugelhahn in der Regel bei vollständig geöffnetem Zustand einzubauen. (Gilt für Mold Cupia Gewindetyp oder Flow Meter.)
 Wenn das Ventil vollständig geöffnet oder geschlossen ist, gibt es eine Lücke zwischen dem Ventilgehäuse und dem Kugelhahn, die eine kleine Menge Fluid unter Druck zurückhalten kann.
 Vor dem Abnehmen des Gehäuses von der Rohrleitung ist das Ventil teilweise zu öffnen, damit sich der Druck abbauen kann. (Gilt für Flow Meter.)

- Verwenden Sie nichts anderes als die entsprechenden Schlauchgrößen. Anderenfalls kann es zu Undichtigkeiten kommen. (Gilt für Schlauchstutzen.)
 Stecken Sie den Stutzen (das Endstück) vollständig in einen Schlauch und sichern Sie ihn mit einer Schlauchschelle. Unvollständiges Einsetzen oder ungenügende Klemmung führt zum Auslaufen oder Abrutschen eines Schlauchs oder Rohrs vom Stutzen (Endstück). (Gilt für Schlauchstutzen.)

- (Gift für Schlauchstutzen.)

 Schlagen Sie niemals auf den Cupla, wenn Sie den Stutzen (das Endstück) in den Schlauch einführen. Anderenfalls kann dies zu einer schlechten Verbindung führen. (Gilt für Schlauchstutzen.)

 Verwenden Sie keine beschädigten (rissigen) oder abgenutzten Schläuche. Anderenfalls kommt es zu Undichtigkeiten oder zum Platzen von Schläuchen. (Gilt für Schlauchstutzen.)

 Bei Wiederverwendung den Schlauch mindestens 3 cm vom Ende abschneiden. Anderenfalls kann der Schlauch auslaufen oder platzen. (Gilt für Schlauchstutzen.)

 Nach der Installation des Cuplas vor dessen Gebrauch immer eine Dichtheitsprüfung durchführen.

 Versuchen Sie nach dem Anschluss, die Buchse und den Stecker auseinander zu ziehen, um sich von der sicheren Verbindung zu überzeugen. Ist die Verbindung unvollständig, können sich Buchse und Stecker unter Druck lösen. (Gilt für Mold Cupla.)

 Nicht verbinden/trennen, während das Fluid noch unter Staudruck oder statischem Restdruck steht. Anderenfalls wird das Ventil beschädigt. (Gilt für Mold Cupla.)
- · Bauen Sie immer ein Absperrventil zwischen Druckquelle und Cupla ein

- Bauen Sie immer ein Absperrventil zwischen Druckquelle und Cupla ein.

 Nicht mit anderen als den angegebenen Fluids oder Medien verwenden, da dies zu Undichtigkeiten oder Schäden führen kann.

 Verwenden Sie sie in dem Zustand, in dem das Fluid, falls es sich um Wasser handelt, nicht gefriert. Sollte es doch einfrieren, wird der Cupla beschädigt.

 Der Einsatz von Inline-Filtern wird dringend empfohlen. Um Schäden zu vermeiden, sollte das Fluid vor Erreichen des Cuplas sauber sein.

 Die Strömungsgeschwindigkeit des Fluids durch den Cupla muss unter 8 m/s gehalten werden. Wenn Geschwindigkeiten von 8 m/s oder höher verwendet werden, wird die Packungsdichtung beschädigt.

 Betätigen Sie bei Verwendung des Flow Meters den Kugelhahn langsam, um Wasserschläge zu vermeiden.

 Lassen Sie das Fluid in Richtung des auf dem Flow Meter angezeigen Pfelis strömen. (Gilt für Flow Meter.)

 Verwenden Sie Cuplas nicht in Bereichen oder Umgebungen, in denen Staub wie Sand oder Metallpulver in die Cuplas gelangen kann. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.

 Lassen Sie keinen Lack am Cupla anhaften. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten den Dichtungsteilen führen zu Undichtigkeiten. (Gilt für Mold Cupla.)

 Keine künstlichen Stöße, Biegungen oder Spannungen anwenden. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

 Lassen Sie den Oupla nicht terkstanen oder eindellen. Insbesondere Krätzer an den Dichtungsteilen führen zu Undichtigkeiten. (Gilt für Mold Cupla.)

- · Lassen Sie den Cupla nicht fallen. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen
- Das direkte Anschließen von Cuplas an vibrierende oder schlagende Geräte führt zu einer verkürzten Lebensdau

- Das uierke risks. indere in voll Cupita an invertenite over isolargenise verletar unit zu eine in Vernendung als Dreingelenk ist nicht möglich.)
 Nur als Schneilkupplungen/Flow Meter für Fluidieitungen verwenden. (Die Verwendung als Dreingelenk ist nicht möglich.)
 Verwenden Sie Cupitas nur in Kombination mit Cupitas von Nitto Kohki, (Bitt für Mold Cupita)
 Verwenden Sie Cupitas nur in Kombination mit Cupitas von Nitto Kohki, (Bitt für Mold Cupita)
 Verwenden Sie Cupitas nur in Kombination mit Cupitas von Nitto Kohki, (Bitt für Mold Cupita)
 Achten Sie bei der Lagerung des Flow Meters darauf, dass das Ventil vollständig geöffnet ist. Bei Lagerung bei teilweise geöffnetem Ventil verformt sich die Dichtung und verursacht Leckagen.

Cupla für Niederdruck (Wasser, Flüssigkeit) und für Mitteldruck

Marnung

- Uben Sie keinen Druck auf eine Cupla-Buchse oder einen Cupla-Stecker aus, während diese abgezogen sind. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen. (Gilt für Ventlikonstruktionen: Zweiwegeabsperrung und Einwegabsperrung)
 Verwenden Sie Cuplas nicht kontinuierlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
 Das Fluid in der Rohrleitung tritt beim Trennen aus. Bei Verwendung für gefährliche Fluids (z. B. heiße Fluids) lassen Sie das gesamte Fluid im Inneren des Cuplas vor dem Trennen ab, um Verbrennungen usw. zu vermeiden.
- konstruktionen: Durchgangsausführung und Einwegabsperrung)

Vorsicht

- Vor dem Einsatz ist die Verträglichkeit des Dichtungs- und Gehäusewerkstoffs mit der Temperatur und des zu verwendenden Fluids zu prüfen. Die Wahl des falschen Dichtungsmaterials führt zu Leckagen.

 Bei der Verwendung von Speziallacken oder Lösungsmitteln ist auf die Materialverträglichkeit zu achten.

 Verwenden Sie nur Cuplas, die innerhalb ihres Nenntemperaturbereichs liegen. Anderenfalls kann es zu Undichtigkeiten durch Abnutzung oder Beschädigung der Dichtung kommen. Ein Cupla kann nicht kontinuierlich bei seiner niedrigsten oder höchsten Betriebstemperatur
- Auch bei Einsatz innerhalb des Nennbetriebstemperaturbereichs kann es bei längerem Gebrauch der TSP Cupla Socket with Ball Valve unter Druck und bei einer Temperatur in den oberen Bereichen zu Leckagen kommen.
- (Dies gift besonders, wenn das Ventil vollständig geöffnet ist.)

 1 Die Lebensdauer des Cuplas hängt von der Betriebsumgebung und den Bedingungen (Druck und Temperatur usw.) ab. Führen Sie bei Bedarf eine Leistungsbewertung unter Ihren tatsächlichen Betriebsbedingungen durch.

 Außerdem kann eine Spannungsriskorrosion hei Verwendung in korrosiver Umgebung auftreten. Beachten Sie die Nutzungsbedingungen.

 Der Betriebsdruck- und der Betriebstemperaturbereich für Schlauch- oder Rohranschlusstypen ist abhängig vom zu verwendenden Schlauch oder Rohr. Vergewissern Sie sich vor dem Gebrauch, dass die Temperatur und der Typ des zu verwendenden Fluids für den Schlauch

- Der Betriebsdruck- und der Betriebstemperaturbereieh für Schlauch- oder Rohranschlusstypen ist abhängig vom zu verwendenden Schlauch oder Rohr. Vergewissern Sie sich vor dem Gebrauch, dass die Temperatur und der Typ des zu verwendenden Fluids für den Schlauch oder Rohr. Vergewissern Sie sich vor dem Gebrauch, dass die Temperatur und der Typ des zu verwendenden Fluids für den Schlauch oder Rohr. Vergewissern Sie sich vor dem Gebrauch, dass die Temperatur und der Typ des zu verwendenden Fluids für den Schlauch oder Rohr. Vergewissern Sie sich vor dem Gebrauch, dass die Temperatur und der Typ des zu verwendenden Fluids für den Schlauch oder Rohr. Vergewissern Sie sich vor dem Gebrauch, dass die Temperatur und der Typ des zu verwendenden Fluids für den Gewindetypt.

 Stellen Sie sicher, dass O-Ringe und Packungsdichtungen stellt mit eine Schlauch seine Schlauch seine Fluids die Gebrauch verwenden sie Schlauch seine Fluids und verwsachen Leckagen. (Ausgenommen Cuplas mit Stimflächendichtung.)

 Ein Dichtband aus Fluopolymerharz auf die konischen Außergewinde der Rohre auftragen, um eine Leckage zu vermeiden. (Gilt für den Gewindetyp.)

 Das empfohlene maximale Drehmoment beim Einschrauben in das Außern oder Innengewinde eines Cuplas für den Einbau nicht überschreiten. Anderentalla kann es zu Beschädigungen kommen.

 Beim Einbau der TSP Cupla Socket with Ball Valve sollte dieser, um die Kugelfläche des Kugelhahns zu schlützen, in der Regel in vollständig geöffneteem Zustand eingebaut werden. (Gilt für dem Gewindetyp und den Nut-Typ.)

 Bei der Montage von Cuplas ist darauf zu achten, dass das Gewinden nicht zu fest angezogen oder verkantet wird, da dies zu Beschädigungen und Leckagen führen kann. (Gilt für Gewindetyp, Nut-Typ, insbesondere das Gehäusematerial: Edelstahl)

 Wern das Vernit vollständig geöffnet oder geschlossen ist, gibt es eine Lücke zwischen dem Vertrügehäuse und dem Kugelhahn, die eine kleine Menge Fluid unter Druck zurückhalten kann.

 Vor dem Abnehmen des Gehäusees von der Rohrietung sich verhitellungsty

- Schneiden Sie den Schlauch bzw. das Rohr in der vorgesehenen Länge vom Ende ab, wem Sie ihn bzw. es wiederverwenden. Anderenfalls kann es zu Leckagen oder zum Bersten des Schlauchs bzw. Rohrs kommen. Die normal beiliegenden "Bedienungsanleitung", (Gilt für Schlauch- bzw. Rohrsanchiuss-Verbindungstyp)

 Nach der Installation des Cuplas vor dessen Gebrauch immer eine Dichtheitsprüfung durchführen.

 Versuchen Sie nach dem Anschluss, die Buchse und den Stecker auseinander zu ziehen, um sich von der sicheren Verbindung zu überzeugen. Ist die Verbindung unvollständig, können sich Buchse und Stecker unter Druck lösen.

 Setzen Sie nach dem Trennen eine vorgesehene Statubschutzkappe auf den Cupla, wenn die Möglichkeit besteht, dass Fremdkörper wie z. B. Schmutz an der Dichtungsoberfläche haften bleiben.

 Nicht verbinden/trennen, während das Fluid noch unter Staudruck oder statischem Restdruck steht. Anderenfalls wird das Ventil beschädigt. (Gilt für Ventilkonstruktionen: Zweiwegeabsperrung und Einwegabsperrung)

 Bauen Sie immer ein Absperrventil zwischen Druckquelle und Cupla ein.

 Schlagen Sie nicht mit einem Hammer oder einem ähnlichen Werkzeug auf die Spitze eines automatischen Absperrventils. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.

 (Gilt für Mitteldruck, Ventilkonstruktion: Zweiwegeabsperrung) Falls Sie jedoch eine Restdruckentlastung benötigen, sprechen Sie uns bitte an.

 Nicht mit anderen als den angegebenen Fluids oder Medien verwenden, da dies zu Undichtigkeiten oder Schäden führen kann.

 Verwenden Sie sie in dem Zustand, in dem das Fluid, falls es sich um Wasser handet, nicht gefriert. Sollte es doch einfrieren, wird der Cupla beschädigt.

 Die Stömmosseschwindiokek des Fluids durch den Cupla in zus unter 8 ms der behalten werden. Wenn Geschwindenken von 8 ms oder höher verwendet werden, wird das Ventil beschädidt. (Gilt für Ventilkonstruktionen: Zweiwege

- Der Einsatz von Inline-Filtern wird dringend empfohlen. Um Schäden zu vermeiden, sollte das Fluid vor Erreichen des Cuplas sauber sein.

 Die Strömungsgeschwindigkeit des Fluids durch den Cupla muss unter 8 m/s gehalten werden. Wenn Geschwindigkeiten von 8 m/s oder höher verwendet werden, wird das Ventil beschädigt. (Gilt für Ventilkonstruktionen: Zweiwegeabsperrung und Einwegabsperrung)

 Belätigen Sie bei Verwendung der TSP Cupla Socket with Ball Vahve den Kugelhahn langsam, um Wasserschläge zu vermeiden. Achten Sie auch darauf, dass Sie sich beim Belätigen des Handhebels nicht die Finger einklemmen.

 Verwenden Sie Cuplas nicht in Bereichen oder Umgebungen, in denen Staub wie Sand oder Metallpulver in die Cuplas gelangen kann. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.

 Aschen Sie darauf, dass Sie den Cupla anhaften. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.

 Achten Sie darauf, dass Sie den Cupla incht verkratzen oder eindellen. Insbesondere Kratzer an den Dichtungstellen führen zu Undichtigkeiten.

 Keine künstlichen Stöße, Biegungen oder Spannungen anwenden. Anderenfalls kann se zu Undichtigkeiten oder Schäden kommen.

 Lassen Sie den Cupla nicht allein. Anderenfalls kann es zu Undichtigkeiten oder Fehltunktionen kommen.

 Das direkte Anschließen von Cuplas an vibrierende oder schlagende Geräte führt zu einer verkürzten Lebensdauer.

 Nur als Schneiklupplungen für Fluidieitungen verwenden. (Die Verwendung als Drehgelenk ist nicht möglich.)

 Verwenden Sie Cuplas nur in Kombination mit Cuplas von Nitto Kohki. (Ausgenommen Lever Lock Cupla)

 Verwenden Sie Cuplas nur in Kombination mit Cuplas von Nitto Kohki. (Ausgenommen Lever Lock Cupla)

 Gelief Lacerunq von TSP Cupla Socket with Ball Valve ist darauf zu achten, dass das Wentil vollständig geöffnet ist. Bei Lacerung bei teilweise geöffnetem Ventil verformt sich die Dichtung und verursacht Leckagen.

- · Bei der Lagerung von TSP Cupla Socket with Ball Valve ist darauf zu achten, dass das Ventil vollständig geöffnet ist. Bei Lagerung bei teilweise geöffnetem Ventil verformt sich die Dichtung und verursacht Leckagen

Sicherheitsleitfaden

⚠ Vorsichtsmaßnahmen bei der Verwendung von Cuplas

Lesen Sie vor Gebrauch unbedingt die dem Produkt beiliegende "Gebrauchsanweisung" oder den "Vorsichtshinweis" auf der Verpackung.

Cuplas für Hochdruck

⚠ Gefahr

· Üben Sie keinen Druck auf eine Cupla-Buchse oder einen Cupla-Stecker aus, während diese abgezogen sind. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

- Verwenden Sie Cuplas nicht kontinuierlich über den Nennbetriebsdruck hinaus. Verwenden Sie außerdem den 700R Cupla nicht in einer Umgebung, in der Impulsdruck herrscht. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

 Nicht verbinden/trennen, während das Fluid noch unter Staudruck oder statischem Restdruck steht. Anderenfalls wird das Ventil beschädigt. Der HSP-PV-Typ kann jedoch unter statischem Restdruck angeschlossen werden.

 Versuchen Sie nach dem Anschluss, die Buchse und den Stecker auseinander zu ziehen, um sich von der sicheren von der sicheren verbindung zu übersezugen. Ist die Verbindung unvollständig, können sich Buchse und Stecker unter Druck lösen.

 Verwenden Sie Cuplas nur in Kombination mit Cuplas von Nitto Kohki. Der 280 Cupla ist jedoch austausschbar mit Kupplungen nach ISO 7241-1A.

 Wenn Sie den 280 Cupla mit anderen Marken verbinden, vergleichen Sie die Druckangaben und verwenden Sie den niedrigeren Druck.

 Cuplas nicht zerlegen. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

- Vor dem Einsatz ist die Verträglichkeit des Dichtungs- und Gehäusewerkstoffs mit der Temperatur und des zu verwendenden Fluids zu prüfen. Die Wahl des falschen Dichtungsmaterials führt zu Leckagen.

 Bei der Verwendung von Speziallacken oder Lösungsmitteln ist auf die Materialverträglichkeit zu achten.

 Verwenden Sie nur Cuplas, die innerhalb ihres Nenntemperaturbereichs liegen. Anderenfalls kann es zu Undichtigkeiten durch Abnutzung oder Beschädigung der Dichtung kommen. Ein Cupla kann nicht kontinuierlich bei seiner niedrigsten oder höchsten Betriebstemperatur eingesetzt werden.

 Die Lebensdauer des Cuplas hängt von der Betriebsungebung und den Bedingungen (Druck und Temperatur usw.) ab. Führen Sie bei Bedarf eine Leistungsbewertung unter Ihren tatsächlichen Betriebsbedingungen durch.

- Die Lebensdauer des Cupitas hangt von der Betriebsumgeoung und een Bedingungen (prück und reimperaturi www, auf zumein aus betreuer aus eine Bedandingen Außerdem kann eine Spannungsiskorrosion bei Verwendung in korrosiver Umgebung auftreten. Beachten Sie die Nutzungsbedingungen.

 Bei der Reinigung von Cupias muss darauf geachtet werden, dass kein Material verwendet wird, das die Dichtungs- und Gehäusewerkstoffe beeinträchtigt.

 Stellen Sie sicher, dass O-Ringe und Packungsdichtungen stets mit Schmiermittel oder Öf geschmiert sind. Anderenfalls werden die O-Ringe beschädigt und verursachen Leckagen.

 Ein Dichthand aus Fluoropolymerhatz auf die konischen Außengewinde der Rohre auftragen, um eine Leckage zu vermeiden.

 Das empfohlene maximale Drehmoment beim Einschrauben in das Außen- oder Innengewinde eines Cuplas für den Einbau nicht überschreiten. Anderenfalls kann es zu Beschädigungen kommen.

 Bei der Montage von Cupias ist darauf zu achten, dass das Gewinde nicht zu fest angezogen oder verkantet wird, da dies zu Beschädigungen und Leckagen führen kann. (Gilt für HSU Cupla, \$210 Cupla)

- Bei der Montage von Cuplas ist darauf zu achten, dass das Gewinde nicht zu fest angezogen oder verkantet wird, da dies zu Beschädigungen und Leckagen führen kann. (Gilt für HSÜ Cupla, S210 Cupla)

 Nach der Installation des Cuplas vor dessen Gebrauch immer eine Dichtheitsprüfung durchführen.

 Setzen Sie nach dem Trennen eine vorgesehene Slaubschutzkappe auf den Cupla, wenn die Möglichkeit besteht, dass Fremdkörper wie z. B. Schmutz an der Dichtungsoberfläche haften bleiben.

 Bauen Sie immer ein Absperrventill zwischen Druckquelle und Cupla ein.

 Schlagen Sie incht mit einem Hammer oder einem ähnlichen Werkzeug auf die Spitze eines automatischen Absperrventils. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen. Falls Sie jedoch eine Restdruckentlastung benötigen, sprechen Sie uns bitte an.

 Nicht mit anderen als den angegebenen Fluids oder Medien verwenden, da dies zu Undichtigkeiten oder Schäden führen kann. Verwenden Sie ein ein dem Zustand, in dem das Fluid, falls es sich um Wasser handelt, nicht gefriert. Sollte es doch einfrieren, wird der Cupla beschädigt.

 Verwenden Sie sie in dem Zustand, in dem das Fluid, falls es sich um Wasser handelt, nicht gefriert. Sollte es doch einfrieren, wird der Cupla beschädigt.

 Der Einsatz von Inline-Filtern wird dringen empfohlen. Um Schäden zu vermeiden, sollte das Fluid vor Erreichen des Cuplas sauber sein.

 Die Strömungsgeschwindigkeit des Fluids durch den Cupla muss unter 8 m/s gehalten werden. Wenn Geschwindigkeiten von 8 m/s oder höher verwendet werden, wird das Ventil beschädigt.

 Verwenden Sie Sie Duplas nicht in Bereichen oder Umgebungen, in denen Statu bit weis Sand oder Metalpulwer in die Cuplas gelangen kann. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.

 Achten Sie darauf, dass Sie den Cupla micht verkratzen oder eindellen. Krätzer an den Dichtungstellen in Hürmen zu Undichtigkeiten oder Schäden kommen.
- Keine künstlichen Stöße, Biegungen oder Spannungen anwenden. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen
- Lassen Sie den Cupla nicht fallen. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen. Wenn ein Flat Face Cupla FF-Stecker fallengelassen wird, besteht die Möglichkeit, dass sich das Ventil öffnet. Um es wieder richtig einzustellen, verbinden Sie die Buchse mit dem Stecker und lösen Sie die Verbindung. Daraufhin kehrt das Ventil in seine ursprüngliche Position zurück. Das direkte Anschließen von Cuplas an vibrierende oder schlagende Geräte führt zu einer verkürzten Lebensdauer

- Das unter Nischmeiten von Cupias an vionienten deut is sollingende der terretar um 120 einen Verautzen zuberksause.
 Nur als Schneilkupplungen für Fühldeitungen verwenden. (Die Verwendung als Drehgelienki ist nicht möglich.)
 Eie Verwendung von O-Ring-Dichtungen für HSP Cupias vom GP- oder GS-Tip verwenden Sie die in der dem Produkt beiliegenden "Bedienungsanleitung" beschriebene O-Ring-Größe.
 Aufgrund der Metall-Touch-Verhältstruktur werden der 450B Cupia und der 700R Cupia leicht undicht, wenn sie nicht gekoppelt sind.
- * Kontaktieren Sie uns, wenn Sie Cuplas für Hochdruckgase verwenden

Multi Cupla-Serie

Allgemeine Multi Cuplas

⚠ Vorsicht

- · Vor dem Einsatz ist die Verträglichkeit des Dichtungs- und Gehäusewerkstoffs mit der Temperatur und des zu verwendenden Fluids zu prüfen. Die Wahl des falschen Dichtungsmaterials führt zu Leckagen. Bei der Verwendung von Speziallacken oder Lösungsmitteln ist auf die
- Verwenden Sie nur Cupias, die innerhalb ihres Nenntemperaturbereichs liegen. Anderenfalls kann es zu Undichtigkeiten durch Abnutzung oder Beschädigung der Dichtung kommen. Ein Cupia kann nicht kontinuierlich bei seiner niedrigsten oder höchsten Betriebstemperatur
- eingesetzt werden.

 Die Lebensdauer des Cuplas hängt von der Betriebsumgebung und den Bedingungen (Druck und Temperatur usw.) ab. Führen Sie bei Bedarf eine Leistungsbewertung unter Ihren tatsächlichen Betriebsbedingungen durch.
- Außerdem kann eine Spannungsrisskorrosion bei Verwendung in korrosiver Umgebung auftreten. Beachten Sie die Nutzungsbedingungen eine Leisungsvereinung unter innen lassaummen be. Außerdem kann eine Spannungsrisskorrosion bei Verwendung in korrosiver Umgebung auftreten. Beachten Sie die Nutzungsbedingungen bei erhaften beschied wird, das die Dichtungs- und Gehauswerkstoffe beeinträchtigt.

 Bei der Reinigung von Cuplas muss darauf geachtet werden, dass kein Material verwendet wird, das die Dichtungs- und Gehauswerkstoffe beeinträchtigt.

 Ein Dichtband aus Fluorpolymerharz auf die konischen Außengewinde der Rohre auftragen, um eine Leckage zu ergenginghalterungstyp, MAM-Typ, MAM-B-Typ).

 Das empfohlene maximale Drehmoment beim Einschrauben in das Außen- oder Innengewinde eines Cuplas für den Einbau nicht überschreiten. Anderenfalls kann es zu Beschädigungen kommen.

- Das empfohlene maximale Drehmoment beim Einschrauben in das Außen- oder Innengewinde eines Cuplas für den Einbau nicht überschreiten. Anderenfalls kann es zu Beschädigungen kommen.
 Nach der Installation des Cuplas vor dessen Gebrauch immer eine Dichtheitsprüfung durchführen.
 Bauen Sie immer ein Absperventil zwischen Druckquelle und Cupla ein.
 Nicht mit anderen als den angegebenen Fluids oder Medien verwenden, da dies zu Undichtigkelten oder Schäden führen kann.
 Der Einsatz von Inline-Filtern wird dringend empfohlen. Um Schäden zu vermeiden, sollte das Fluid vor Erreichen des Cuplas sauber sein.
 Verwenden Sie Cuplas nicht in Bereichen oder Umgebungen, in denen Staub wie Sand oder Metalipulver in die Cuplas gelangen kann. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.
 Lassen Sie keinen Lack am Cupla anhaften. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.
 Achten Sie darauf, dass Sie den Cupla nicht verkratzen oder eindellen. Kratzer an den Dichtungstellen führen zu Undichtigkeiten.
 Keine Kinstlichen Stöße. Bieuungen oder Soannungen anwenden. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

- Keine künstlichen Stöße, Biegungen oder Spannungen anwenden. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen Das direkte Anschließen von Cuplas an vibrierende oder schlagende Geräte führt zu einer verkürzten Lebensdauer.
- Nur als Schnellkupplungen für Fluidleitungen verwenden.
 Verwenden Sie Cuplas nur in Kombination mit Cuplas von Nitto Kohki.

MAM-Typ

⚠ Warnung

- Nicht verbinden/brennen, w\u00e4hrend das Fluid noch unter Staudruck oder statischem Restdruck steht, der den maximalen Betriebsdruck \u00fcberschreitet. Anderenfalls wird der Cupla besch\u00e4digt.
 Lassen Sie Multi Cuplas nicht fallen. Anderenfalls wird die Platte verformt.

- Verwenden Sie Cuplas nicht kontinuierlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
 Stellen Sie sicher, dass O-Ringe und Packungsdichtungen stets mit Schmiermittel oder Öl geschmiert sind. Anderenfalls werden die O-Ringe beschädigt und verursachen Leckagen.
 Verformen Sie nicht den Anschlagring bei der Montage von Cuplas. Wird der Anschlagring verbreitert, kann er sich aus seiner Nut lösen und zu einer schlechten Verbindung oder Beschädigung des Cuplas führen. Wechseln Sie beim Austausch des Cuplas auch den
- Anschlagring gegen einen neuen aus.
 Verlegen Sie Schläuche symmetrisch von der Verriegelungseinheit aus, wenn sie mit dem Cupla verbunden sind, um die Reaktionskraft gleichmäßig zu verteilen. Nichtbeachtung dieses Hinweises führt zum Bruch.
- Stellen Sie die Verbindung her, nachdem Sie sich überzeugt haben, dass sich der Hebel in der Position "Verbinden" befindet. Eine Verbindung wird nur hergestellt, wenn er sich in der Position "Verbinden" befindet.
 Drehen Sie den Hebel nicht gewaltsam. Anderenfalls kommt es zum Bruch.
- Cuplas nicht zerlegen. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

MAM-A-Tvp / MAM-B-Tvp

- Sie dürfen Cuplas nicht anschließen oder trennen, solange sie unter Druck stehen oder ein Restdruck von mehr als 0,6 MPa verbleibt. Anderenfalls werden die Cuplas beschädigt
 Verwenden Sie Cuplas nicht kontinuierlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
 Lassen Sie Multi Cuplas nicht fallen. Anderenfalls wird die Platte verformt.

- · Stellen Sie sicher, dass O-Ringe und Packungsdichtungen stets mit Schmiermittel oder Öl geschmiert sind. Anderenfalls werden die O-Ringe beschädigt und verursachen Leckagen
- Stellen Sie sicher, dass O-Ringe und Packungsdichtungen stets mit Schmiermittel oder Of geschmiert sind. Anderenfalls werden die O-Ringe beschädigt und verursachen Leckagen.

 Mondieren Sie den Sicherungsring vom Typ C mit einer Sprengringzange. Werden die Sicherungsring evom Typ C zu stark aufgeweitet, lösen sie sich aus ihrer Nut und führen zu einer schlechten Verbindung oder zum Bruch. Wechseln Sie beim Austausch des Cuplas auch den Sicherungsring gegen einen neuen aus.

 Verlegen Sie Schläuche symmetrisch von der Verriegelungseinheit aus, wenn sie mit dem Cupla verbunden sind, um die Reaktionskraft gleichmäßig zu verteilen. Nichtbeachtung dieses Hinweises führt zum Bruch.

 Stellen Sie die Verbindung her, nachdem Sie sich überzeugt haben, dass sich der Hebel in der Position, "Verbinden" befindet. Eine Verbindung wird nur hergestellt, wenn er sich in der Position, "Verbinden" befindet.

 Drehen Sie den Hebel nicht gewaltsam. Anderenfalls kommt es zum Bruch.

 Schlagen Sie nicht mit einem Hammer oder einem Äntlichen Werkzeug auf die Spitze eines automatischen Absperrventils. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.

 Verwenden Sie sie in dem Zustand, in dem das Fluid, falls es sich um Wasser handet, nicht gefriert. Sollte es doch einfrieren, wird der Cupla beschädigt.

 Die Strömungsgeschwindigkeite des Fluids durch den Cupla muss unter 8 mis gehalten werden. Wenn Geschwindigkeiten von 8 m/s oder höher verwendet werden, wird das Ventil beschädigt.

 Cuplas nicht zerlegen. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

🚹 Vorsichtsmaßnahmen bei der Verwendung von Cuplas

Lesen Sie vor Gebrauch unbedingt die dem Produkt beiliegende "Gebrauchsanweisung" oder den "Vorsichtshinweis" auf der Verpackung.

Multi Cupla-Serie

MAS-Typ / MAT-Typ

⚠ Warnung

- Üben Sie keinen Druck auf eine Cupla-Buchse oder einen Cupla-Stecker aus, während diese abgezogen sind. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
 Verwenden Sie Cuplas nicht kontinuierlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

- Stellen Sie sicher, dass G-Ringe und Packungsdichtungen stets mit Schmiermittel oder Öl geschmiert sind. Anderenfalls werden die O-Ringe beschädigt und verursachen Leckagen.

 Halten Sie die Exzentrizität der Mittelachse von Buchse und Stecker innerhalb eines Durchmessers von 0,6 mm. Anderenfalls kann es zu Undichtigkeiten oder Brüchen kommen.

 Montieren Sie den Sicherungsring vom Typ C mit einer Sprengringzange. Werden die Sicherungsringe vom Typ C zu stark aufgeweitet, lösen sie sich aus ihrer Nut und führen zu einer schlechten Verbindung oder zum Bruch. Wechseln Sie beim Ausstausch des Cuplas auch den Sicherungsring egen einen neuen aus. (Gilt für den Cupla des MAS-Typs.)

 Bei der Montage von Cuplas ist darauf zu achten, dass das Gewinde nicht zu fest angezogen oder verkantet wird, da dies zu Beschädigungen und Leckagen führen kann.

 Stecken Sie beim Anschließen Buchse und Stecker spallfrei zusammen. Wenn der Spalt größer als 0,5 mm ist, wird der Durchtuss reduziert.

- Steicken sie beim Anschlieben buchse und steicker spatitrei zusammen. Wenn der Spati grober als Up mit ist, wird der Lurchunss reduziert.
 Für die Last, die zur Aufrechtenhaltung der Verbrindung beim Anschluss des Cuplas erforderlich ist, siehe die Seite in diesem Katalog, auf der der MAS-Typ/MAT-Typ beschrieben ist. Ein Überschreiten der maximal zulässigen Last führt zum Bruch. Ein Anschluss unterhalb der Mindestlast, die zur Aufrechterhaltung der Verbindung erforderlich ist, sich die Zue einem verringerten Durchfluss.
 Nicht verbrinden/trennen, während das Fluid noch unter Staudruck oder statischem Restdruck steht. Anderentalis das Ventil beschädigt.
 Schlagen Sie nicht mit einem Hammer oder einem ähnlichen Werkzeug auf die Spitze eines automatischen Absperrventils. Anderentalis kann es zu Undichtigkeiten oder Fehlfunktionen kommen.
 Verwenden Sie sie in dem Zustand, in dem das Fluid, falls es sich um Wasser handelt, nicht gefriert. Sollte es doch einfrieren, wird der Cupla beschädigt.
 Die Strömungsgeschwindigkeit des Fluids durch den Cupla mus unter 8 ms gehalten werden. Wenn Geschwindigkeiten von 8 m/s oder höher verwendet werden, wird das Ventil beschädigt.
 Lassen Sie den Cupla nicht fallen. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.
 Curlas einst verlenen, Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.

- Cuplas nicht zerlegen. Anderenfalls kann es zu Undichtigkeiten oder Schäden komme

MALC-01-Tvp

- Verwenden Sie Cunlas nicht kontinuierlich über den Nennhetriehsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

- Verwenden Sie Cuplas nicht kontinulerlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
 Halten Sie die Exzentrizität der Mittleachse von Buchse, Stecker undloder Bohung in der Platte in innerhalb eines Durchmessers von 2 mm. Anderenfalls kann es zu Undichtigkeiten oder Brüchen kommen.
 Die Abmessungen der Endkonfigurationen für die Bearbeitung auf Platten finden Sie auf der Seite in diesem Katalog, auf der der MALC-01-Typ beschrieben ist.
 Die Schrägstellung von Buchse und Stecker muss beim Anschließen oder Trennen innerhalb von 0,5 Grad liegen. Bei einer Montage über 0,5 Grad kann es zu Leckagen oder Beschädigungen kommen.
 Stecken Sie beim Anschließen Buchse und Stecker spaltfer zusammen. Eine problemiose Verwendung ist jedoch bei einem Spalt von biz su 0,5 mm möglich. Wenn der Spalt größer als 0,5 mm ist, wird der Durchfluss reduziert.
 Für die Last, die zur Aufrechterhaltung der Verbindung beim Anschluss des Cuplas erforderlich ist, siehe die Seite in diesem Katalog, auf der der MALC-01-Typ beschrieben ist. Ein Überschreiten der maximal zulässigen Last führt zum Bruch.

- Fur die Last, die Zur Aufrechterhaltung der Verbindung einer Ausschaus des Cuplas ernorenicht ist, siehe die Seite in diesen Anabus, auf der MacC-01-typ Descrineberinst. Ein Oberstreiten der Haximal Zulassigen Last num Zuri Frider.

 Wenn Sie Wasser benutzen, beurteilen Sie, ob der Cupla verwendet werden kann, indem Sie einen Leistungsbewertungstest unter Ihren tatsächlichen Betriebsbedingungen durchführen.

 Leckagen können durch Rost oder Fremdkörper in der Röhrleitung oder durch erstarrte Mineralien entstehen. Verwenden Sie den Cupla in einem Zustand, in dem das Fluid, falls es sich um Wasser handelt, nicht gefriert. Sollte es doch einfrieren, wird der Cupla beschädigt.

 Die Störmungsgeschwindigkeit des Fluids durch den Cupla muss unter 8 m/s gehalten werden. Wenn Geschwindigkeiten von 8 m/s oder höher verwendet werden, wird das Ventil beschädigt.

 Lassen Sie den Cupla nicht fallen. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.

 Cuplas nicht zerlegen. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

MALC-SP-Tvp / MALC-HSP-Tvp

Verwenden Sie entkoppelte Buchsen oder Stecker nicht kontinuierlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen. (Gilt für den MALC Type Cupla.)

⚠ Warnung

- Verwenden Sie Cuplas nicht kontinuierlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen
- Cuplas nicht zerlegen. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommer

- Halten Sie die Exzentrizität der Mittelachse von Buchse und Stecker innerhalb eines Durchmessers von 2 mm. Anderenfalls kann es zu Undichtigkeiten oder Brüchen kommen.

 Die Schrägstellung von Buchse und Stecker muss beim Anschließen oder Trennen innerhalb von 0,5 Grad liegen. Bei einer Montage über 0,5 Grad kann es zu Leckagen oder Beschädigungen kommen.

 Montieren Sie den Sicherungsring vom Typ C mit einer Sprengringzange. Werden die Sicherungsringe vom Typ C zu stark aufgeweltet, lösen sie sich aus ihrer Nut und führen zu einer schlechten Verbindung oder zum Bruch.

 Wechseln Sie beim Austausch des Cuplas auch den Sicherungsring gegen einen neuen aus. (Gilt für den Sprengringhalterungstyp.)

 Bei der Montage von Cuplas ist darauf zu achten, dass das Gewinde nicht zu fest angezogen oder verkantet wird, da dies zu Beschädigungen und Leckagen führen kann. (Gilt für den MALC-SP Type Cupla.)

 Stecken Sie beim Anschließen Buchse und Stecker spallfrei zusammen. Eine problemlose Verwendung ist jedoch auch bei einem Spalt von bis zu 0,5 mm möglich. Wenn der Spalt größer als 0,5 mm ist, wird der Durchfluss re
 Für die Last, die zur Aufrechterhaltung der Verbindung beim Anschluss des Cuplas erforderlich ist, siehe die Seite in diesem Katalog, auf der der MALC-SP-Typ oder der MALC-HSP-Typ beschrieben ist.

 Ein Überschreiten der maximal zulässigen Last führt zum Bruch. Ein Anschluss unterhalb der Mindestlast, die zur Aufrechterhaltung der Verbindung erforderlich ist, führt zu einem verringerten Durchfluss.

 Schlagen Sie nicht mit einem Hammer oder einem ähnlichen Werkzeug auf die Spitze eines automatischen Absperrventlis. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.

- Verwenden Sie sie in dem Zustand, in dem das Fluid, falls es sich um Wasser handelt, nicht gefriert. Sollte es doch einfrieren, wird der Cupla beschädigt.
- Die Strömungsgeschwindigkeit des Fluids durch den Cupla muss unter 8 m/s gehalten werden. Wenn Geschwindigkeiten von 8 m/s oder h\u00f6her verwendet werden, wird das Ventil besch\u00e4digt.
 Lassen Sie den Cupla nicht fallen. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.

Semicon Cupla-Serie

⚠ Warnung

- Üben Sie keinen Druck auf eine Cupla-Buchse oder einen Cupla-Stecker aus, während diese abgezogen sind. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

 Vor dem Einsatz ist die Verträglichkeit des Dichtungs- und Gehäusewerkstoffs mit der Temperatur und des zu verwendenden Fluids zu prüfen. Die Wahl des falschen Dichtungsmaterials führt zu Leckagen.
 (Die in unserem Produktkatals) geschriebene, Dichtungsmaterial-Auswahltableil- und die, Gahausewerkstoff-Auswahltabeller dienen nur zur Orientierung.)

 Verwenden Sie Cuplas nicht kontinuierlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
- · Verwenden Sie nur Cuplas, die innerhalb ihres Nenntemperaturbereichs liegen. Anderenfalls kann es zu Undichtigkeiten durch Abnutzung oder Beschädigung der Dichtung kommen. Ein Cupla kann nicht kontinuierlich bei seiner niedrigsten oder höchsten Betriebstemperatur
- eingesetzt werden.

 Bei der Verwendung von gefährlichen Fluids immer Schutzkleidung tragen, die für das verwendete Fluid geeignet ist und den ganzen Körper schützt. Jegliches Verschütten oder Auslaufen sollte von einem Fachmann für dieses Produkt behandelt werden.

- Roch refunded vision in the control of the contro

- Die Lebensdauer des Cuplas hängt von der Betriebsumgebung und den Bedingungen (Druck und Temperatur usw.) ab. Führen Sie bei Bedarf eine Leistungsbewertung unter Ihren tatsächlichen Betriebsbedingungen durch
- Außerdem kann eine Spannungsrisskorrosion bei Verwendung in korrosiver Umgebung auftreten. Beachten Sie die Nutzungsbedingungen. O-Ringe sind Verbrauchsmaterialien. Tauschen Sie sie regelmäßig aus Führen Sie erforderlichenfalls einen Elutionstest durch und überzeugen Sie sich, dass das Material geeignet ist.
 Beit der Reinigung von Cuplas muss darauf geachtet werden, dass kein Material verwendet wird, das die Dichtungs- und Gehäusewerkstoffe beeinträchtigt.
- Bei der Reinigung von Cuplas muss darauf geachtet werden, dass kein Material verwendet wird, das die Dichttungs- und Gehäusewerkstoffe beeinträchtigt.

 Ein Dichttand aus Fluopolymerharz auf die konischen Außengewinde der Rohre auftragen, um eine Leckage zu vereinden.

 Das empfohlene maximale Drehmoment beim Einschrauben in das Außen- oder Innengewinde eines Cuplas für den Einbau nicht überschreiten. Anderenfalls kann es zu Beschädigungen kommen. (Gilt für SP-Typ, SCS-Typ und SCY-Typ.)

 Bei der Montage von CDT Type oder SCAL Type Cuplaz zuerst ein Fluorpolymerharz-Dichtband auf das Außenseleglewinde des Rohrs auftragen und Leckagen führen kann. (Gilt für SP-Typ, SCS-Typ und SCY-Typ.)

 Bei der Montage von SCT Type oder SCAL Type Cuplaz zuerst ein Fluorpolymerharz-Dichtband auf das Außenseleglewinde des Rohrs auftragen und von Hand flest anziehen. Dann zusätzlich mit einem Schraubenschlüssel 1 3/4 bis 2 Umdrehungen anziehen. Durch übermäßiges Anziehen würde das Gewinde hier beschädigt werden und es käme zu Leckagen. Gehen Sie daher vorschlicht vor Verwenden Sie in inchts anderes als die entsprechenden Schlausdregfößen. Anderenfalls kann es zu Undichtigkeiteln kommen.

 Vortnacklieren Sie uns, wenn Detailabmessungen des Befestigungstells erforderlich sind, wie z. B. 19/32-18/INS (für SP- oder SCS-Typ) oder die Anwendungsform für Stecker vom SCF Type Cupla.

 Nach der Installation des Cuplas vor dessen Gebrauch immer eine Dichthelisprüfung durchfürren.

 Um die Einpresskraft der Verbindung zu reduzieren und eine Beschädigung des O-Rings zu vermeiden, ist die Steckerspitze und die Dichtfläche mit reinem Wasser oder einem für die Betriebsumgebung geeigneten Schmiermittel zu bestreichen. (Gilt für SP-Typ, SCS-Typ.)

 Versuchen Sie nach dem Anschluss, die Buchse und den Stecker auseinander zu ziehen, um sich von der sicheren Verbrindung zu überzeugen. Ist die Verbindung unvollständig, können sich Buchse und stecker unter Druck lösen.

 Bei Fluorpolymerharz-Cuplas führt der Dauereinsatz unter Staudruck zu

- Bei Verwending für gefährliche Fluids lassen Sie das gesamte Fluid im Inneren des Cuplas mit Stickstoffgas usw. ab, bevor die Verbindung getrennt wird. Wenn die Verbindung getrennt wird, ohne dass das Fluid abgelassen wird, tritt eine kleine Menge Fluid aus.

 Setzen Sie nach dem Trennen immer eine vorgesehene Staubschutzkappe auf. Eventuell an der Dichtfläche anhaftende Fremdkörper verursachen Leckagen.

 Bauen Sie immer ein Absperventil zwischen Druckquelle und Cupla ein.

Sicherheitsleitfaden

🛕 Vorsichtsmaßnahmen bei der Verwendung von Cuplas

Lesen Sie vor Gebrauch unbedingt die dem Produkt beiliegende "Gebrauchsanweisung" oder den "Vorsichtshinweis" auf der Verpackung.

Semicon Cupla-Serie

⚠ Vorsicht

- Keine künstlichen Stöße, Biegungen oder Spannungen anwenden. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
 Lassen Sie den Cupla nicht fallen. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.
 Das direkte Anschließen von Cuplas an vibrierende oder schlagende Geräte führt zu einer verkürzten Lebensdauer.

- Nur als Schnelikupplungen für Fluidleitungen verwenden. (Die Verwendung als Drehgelenk ist nicht möglich.)
 Cuplas nicht zerlegen. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
 Überprüfen Sie Cuplas regelmäßig. Stellen Sie die Verwendung des Cuplas sofort ein, wenn Sie etwas Ungewöhnliches am Cupla feststellen.

Cupla für Inertgas

- Üben Sie keinen Druck auf eine Cupla-Buchse oder einen Cupla-Stecker aus, während diese abgezogen sind. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen. (Gilt für den SP-V Cupla.)
 Verwenden Sie Cuplas nicht kontinuierlich über den Nennbetriebsdruck hinaus. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.
 Das Fluid in der Rohrleitung tritt beim Trennen aus. Seien Sie besonders vorsichtig, wenn Sie Cuplas an Orten verwenden, an denen es zu völligem Sauerstoffmangel kommen kann. (Gilt für den PCV Pipe Cupla.)

- Vor dem Einsatz ist die Verträglichkeit des Dichtungs- und Gehäusewerkstoffs mit der Temperatur und des zu verwendenden Fluids zu prüfen. Die Wahl des falschen Dichtungsmaterials führt zu Leckagen.
 Verwenden Sie nur Cuplas, die innerhalb ihres Nenntemperaturbereichs liegen. Anderenfalls kann es zu Undichtigkeiten durch Abnutzung oder Beschädigung der Dichtung kommen. Ein Cupla kann nicht kontinuierlich bei seiner niedrigsten oder höchsten Betriebstemperatur eingesetzt werden.
- Die Lebensdauer des Cuplas hängt von der Betriebsumgebung und den Bedingungen (Druck und Temperatur usw.) ab. Führen Sie bei Bedarf eine Leistungsbewertung unter Ihren tatsächlichen Betriebsbedingungen durch.

 Außerdem kann eine Spannungsrisskorrosion bei Verwendung in korrosiver Umgebung auftreten. Beachten Sie die Nutzungsbedingungen. Für den PCV Pipe Cupla gilt als ungefähre Anleitung: Ersetzen Sie ihn nach 5000-maligem Verbinden/Trennen durch

- einen neuen.

 Bei der Reinigung von Cuplas muss darauf geachtet werden, dass kein Material verwendet wird, das die Dichtungs- und Gehäusewerkstoffe beeinträchtigt.

 Tragen Sie Gewindedichtungsmittel auf die Außenkegelgewinde von Rohren auf, um Leckagen zu vermeiden.

 Das empfohlene maximale Drehmoment beim Einschrauben in das Außen- oder Innengewinde eines Cuplas für den Einbau nicht überschreiten. Anderenfalls kann es zu Beschädigungen kommen.

 Bei der Montage von Cuplas is darauf zu achten, dass das Gewinde nicht zu fest angezogen oder verkantet wird, da dies zu Beschädigungen und Leckagen führen kann.

 (Gilt für den SP-V Cupla. Gehäusewerkstoff: Edelstahl)

- Nach der Installation des Cuplas vor dessen Gebrauch immer eine Dichtheitsprüfung durchführen

- Nach der Installation des Cupias vor dessen Gebrauch immer eine Dichtheitsprufung durchfuhren.
 Stellen Sie sicher, dass O-Ringe stets mit Schmiermittel geschmiert sich Anderenfalls werden die O-Ringe beschädigt und verursachen Leckagen. (Gilt für den SP-V Cupla. Dichtungsmaterial:)
 Um die Einpresskraft der Verbindung zu reduzieren und eine Beschädigung des O-Rings zu vermeiden, ist die Steckerspitze und die Dichtfläche mit einem für die Betriebsumgebung geeigneten Schmiermittel zu bestreichen.
 (Gilt für den SP-V Cupla. Dichtungsmaterial: INHBR)
 Verwenden Sie lediglich geeignete Schlauchgrößen. Anderenfalls kann es zu Undichtigkeiten kommen. Kontaktieren Sie uns bei Bedarf für die Verwendung von Rohren aus Aluminiumlegierungen. (Gilt für den PCV Pipe Cupla.)
 Fasen Sie die Kante des zu verwendenden Kupferrohrs an. Wenn sie nicht angefast wird, wird die Dichtung beschädigt und verursacht Leckagen. Verwenden Sie keine Rohre mit Verformungen oder Graten. Anderenfalls führt dies zu Undichtigkeiten oder schlechter Verbindung. (Gilt für den PCV Pipe Cupla.)
- Drücken Sie beim Anschließen von Kupferrohren den Hebel erst dann nach unten, wenn sichergestellt ist, dass das Ende des Kupferrohrs gegen die Dichtung im Inneren des Cuplas gedrückt wird. Achten Sie zu diesem Zeitpunkt darauf, dass Sie sich nicht die
- Drucken Sie Deim Anschließen von Kupterrohren den Hebel erst dann nach unten, wenn sichergesteilt ist, dass das Ende des Kupterrohrs gegen die Dichtung im Inneren des Cuplas gedruckt wird. Achten Sie zu diesem Zeitpunkt darauf, dass Sie sich nicht die Finger einklemmen. (Gilt für den PCV Pipe Cupla.)
 Versuchen Sie nach dem Anschluss, die Buchse und den Stecker oder den Cupla und das Rohr auseinander zu ziehen, um sich von einer sicheren Verbindung zu überzeugen. Ist die Verbindung unvollständig, können sich Buchse und Stecker unter Druck lösen.
 Nicht trennen, während das Fluid noch unter Staudruck oder statischem Restdruck zu verbinden bzw. zu trennen.
 Sei Verbindung mit dem Kupterrohr darf das Rohr nicht gedreht werden. Anderenfalls wird die Dichtung beschädigt und verursacht Leckagen. (Gilt für den PCV Pipe Cupla.)
 Setzen Sie nach dem Trennen eine vorgesehene Staubschutzkappe auf den Cupla, wenn die Möglichkeit DeCV (Schlieber DeCV) (Schlieber DeCV)

- Im getrennten Zustand ist der Cupla mit dem Hebel in der Position "Geöffnet" aufzubewahren. (Gilt für den PCV Pipe Cupla.)
- Im getrennten zustand ist der Cupia mit dem Hebel in der Position "Geöffner" aufzubewahren. (Gilt für den PCV Pipe Cupia.)

 Bauen Sie immer ein Absperventill zwischen Druckquelle und Cupia ein.

 \$ Schlagen Sie nicht mit einem Hammer oder einem ähnlichen Werkzeug auf die Spitze eines automatischen Absperrventils. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen. (Gilt für den SP-V Cupia.) Falls Sie jedoch eine Restdruckentlastung benötigen, sprechen Sie uns bitte an.

 Nicht mit anderen als den angegebenen Fluids oder Medien verwenden, da dies zu Undichtigkeiten oder Schäden führen kann.

 Der Einsatz von Inline-Filtern wird dringend empfohlen. Um Schäden zu vermeiden, sollte das Fluid vor Erreichen des Cupias suber sein.

 Verwenden Sie Cupias insicht in Bereichen oder Umgebungen, in denen Staub wie Sand oder Metallpulver in die Cupias gelangen kann. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.

 Lassen Sie keinen Lack am Cupia anhaften. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.

- · Achten Sie darauf, dass Sie den Cupla nicht verkratzen oder eindellen. Insbesondere Kratzer an den Dichtungsteilen führen zu Undichtigkeiten.

- Achten Sie darauf, dass Sie den Cupla nicht verkratzen oder eindellen. Insbesondere Kratzer an den Dichtungsteilen führen zu Undichtigkeiten.
 Keine künstlichen Stöße, Biegungen oder Spannungen anwenden. Anderentalls kann es zu Undichtigkeiten oder Schäden kommen.
 Lassen Sie den Cupla nicht fallen. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.
 Das direkte Anschließen von Cuplas an vibrierende oder schlagende Geräte führt zu einer verkürzten Lebensdauer.
 Stellen Sie die Benutzung des Cuplas ein, wenn der Hebel deformiert ist. (Gilt für den PCV Pipe Cupla.)
 Stellen Sie sicher, dass alle Kupferreste oder Späne, die an der Innenseite des Cuplas haften geblieben sind, nach Gebrauch entfernt werden. (Gilt für den PCV Cupla.)
 Nur als Schneilkupplungen für Fluidleitungen verwenden. (Die Verwendung als Drehgelenkt ist nicht möglich.) (Gilt für den SP-V Cupla.)
 Verwenden Sie Cuplas nur in Kombination mit Cuplas von Nitto Kohki. (Gilt für den SP-V Cupla.)
- Cuplas nicht zerlegen. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen

Paint Cupla

- · Vergewissern Sie sich, dass ein Schlauch, der eine Erdungsleitung enthält, mit einer Erdung verbunden ist. Unzureichende Erdung führt zu einem Brand oder einer gefährlichen Explosion, verursacht durch mögliche Funkenbildung statischer Elektrizität
- Tragen Sie stets geeignete Kleidung und Schutzausrüstung wie Schutzbrille, Gesichtsschutz und Handschuhe. Anderenfalls könnte es gefährlich werden, wenn Lacke oder Lösungsmittel auf die Bediener spritz

- Dieser Cupla ist für lösemittelverdünnte Lacke bestimmt. Verwenden Sie diesen Cupla nicht für andere Anwendungen wie Pulverbeschichtung, elektrostatische Beschichtung oder Elektrotauchlackierung. Anderenfalls wird das Dichtungsmaterial abgenutzt und
- verursacht Leckagen.
 Bei der Verwendung von Speziallacken oder Lösungsmitten ist auf die Materialwerträglichkeit zu achten.
 Verwenden Sie nur Cuplas, die innerhalb ihres Nenntemperaturbereichs liegen. Anderenfalls kann es zu Undichtigkeiten durch Abnutzung oder Beschädigung der Dichtung kommen. Ein Cupla kann nicht kontinuierlich bei seiner niedrigsten oder höchsten
- Die Lebensdauer des Cuplas hängt von der Betriebsumgebung und den Bedingungen (Druck und Temperatur usw.) ab. Führen Sie bei Bedarf eine Leistungsbewertung unter Ihren tatsächlichen Betriebsbedingungen durch.

- Die Lebensbauer des Cupias hangt von der Betriebsungebung und den Bedingungen (Urtok und Temperatur usw.) an .- Purfiers bie dei bedarf eine Leistungsbewertung unter inren tatsachlichen Betriebsbedingungen.
 Außerdem kann eine Spannungsrisskorrosion bei Verwendung in korrosiver Umgebung auftretten. Beachten Sie die Nutzungsbedingungen.
 Das empfohlene maximale Drehmoment beim Einschrauben in das Außen- oder Innengewinde eines Cuplas für den Einbau nicht überschreiten. Anderenfalls kann es zu Beschädigungen kommen.
 Nach der Installation des Cupias vor dessen Gebrauch immer eine Dichtheitsprüfung durchführen.
 Versuchen Sie nach dem Anschluss, die Buchse und den Stecker auseinander zu ziehen, um sich von der sicheren Verbindung zu überzeugen. Ist die Verbindung unvollständig, können sich Buchse und Stecker unter Druck lösen.
 Das Fluid in der Rohrleitung an der Steckerseite tritt beim Trennen aus. Seien Sie vorsichtig, damit es nicht mit dem menschlichen Körper in Berührung kommt.
 Reinigen Sie die Cuplas nach jedem Gebrauch. Anderenfalls trocknet der Lack aus und führt zu Fehlfunktionen, unzureichender Farbmischung oder schlechter Grundierung. Bei der Reinigung von Cuplas muss darauf geachtet werden, dass kein Material vorwenderteit wird. verwendet wird, das die Dichtungs- und Gehäusewerkstoffe beeinträchtigt.

- verwenden Sie beim Reinigen nicht das Verburkstorte deeintrachtigt.

 Versuchen Sie beim Reinigen nicht das Verhült zu öffnen, indem Sie etwas anderes als den Stecker in die Buchse stecken. Anderenfalls kann es zu Undichtigkeiten kommen.

 Bauen Sie immer ein Absperrventil zwischen Druckquelle und Cupla ein.

 Der Einsatz von Inlinie-Filtern wird dringend empfohlen. Um Schädeden zu vermeiden, sollte das Fluid vor Erreichen des Cuplas sauber sein.

 Lassen Sie das Fluid immer von der Buchse zum Stecker fließen.

 Verwenden Sie Cuplas nicht in Bereichen oder Umgebungen, in denen Staub wie Sand oder Metallpulver in die Cuplas gelangen kann. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.
- Achten Sie darauf, dass Sie den Cupla nicht verkratzen oder eindellen. Insbesondere Kratzer an den Dichtungsteilen führen zu Undichtigkeiten
- Rottert inse tad auf, wissa Sie deut Ougha lindt verkracken fouer einderein. Hissosonive et Natzer an der Doctumigsteien intelle zu Omit.
 Keine künstlichen Stöße, Biegungen oder Spannungen anwenden. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.
 Lassen Sie den Cupla nicht fallen. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.
 Das direkte Anschließen von Cuplas an vibrierende oder schlagende Geräte führt zu einer verkürzten Lebensdauer.
 Nur als Schnellkupplungen für Fluidleitungen verwenden. (Die Verwendung als Drehgelenk ist nicht möglich.)
 Verwenden Sie Cuplas nur in Kombination mit Cuplas von Nitto Kohki.
 Cuplas nicht zerlegen. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

🛕 Vorsichtsmaßnahmen bei der Verwendung von Cuplas

Lesen Sie vor Gebrauch unbedingt die dem Produkt beiliegende "Gebrauchsanweisung" oder den "Vorsichtshinweis" auf der Verpackung.

Hygienic Cupla

⚠ Warnung

Das im Kanal verbliebene restliche Fluid läuft beim Trennen der Verbindung aus. Lassen Sie vor dem Trennen der Verbindung das restliche Fluid ab, um Verbrennungen oder Verletzungen der Haut zu vermeiden, wenn gefährliche Medien wie Chemikalien oder Hochtemperaturflüssigkeiten verwendet werden. Wenn das Fluid mit der Haut in Berührung kommt, unterbrechen Sie die Trennarbeiten und konsultieren Sie gegebenenfalls einen Arzt.

Beachten Sie die folgenden Vorsichtsmaßnahmen. Bei Nichtbeachtung kann es zu Verbrennungen oder Verletzungen der Haut sowie zu Schäden am Produkt oder an anderen Maschinen kommen, wenn gefährliche Medien wie Chemikalien oder Hochtemperaturflüssigkeiten verwendet werden. Stellen Sie sofort die Benutzung des Cuplas ein, wenn dies passiert.

- Der Cupla kann zur Reinigung problemlos zerlegt werden. Der Cupla sollte vor dem Gebrauch auf seine Eignung in Bezug auf Hygiene und Sicherheit geprüft werden Besonders bei der Verwendung von O-Ringen anderer Hersteller als Nitto Kohki ist darauf zu achten, dass der O-Ring von Ihnen bewertet wird.
 Vor dem Einsatz ist die Verträglichkeit des Dichtungs- und Gehäusewerkstoffs mit der Temperatur und des zu verwendenden Fluids zu prüfen.
- Die Wahl des falschen Dichtungsmaterials führt zu Leckagen.
- Verwenden Sie den Cupla nicht dauerhaft unter einem Druck, der den Nennbetriebsdruck überschreitet. Dies kann zu Undichtigkeiten oder Schäden führen.

- Verwenden Sie den Lupla nicht dauernat unter einem Uruck, der den Nennoertiebsprück überschreitet. Dies kann zu undichtigkeiten oder Schaden funden.
 Nur im Bereich der jeweiligen Nenntemperatur verwenden. Kann bei anderer Verwendung die Dichtung abnutzen bzw. beschädigen und undicht werden.
 Außerdem nicht kontinuierlich bei der niedrigsten oder höchsten Betriebstemperatur verwenden.
 Die Lebensdauer des Cuplas hängt von der Betriebsumgebung und den Bedingungen (Druck und Temperatur usw.) ab. Führen Sie bei Bedarf eine Leistungsbewertung unter Ihren tatsächlichen Betriebsbedingungen durch.
 Beim Montieren, Demonitieren und Reinigen die demontierten Teile nicht fallen lassen oder die Dichtfläche verkratzen. Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.
 Beim Roisieren mit Webers die Jesebharde beit seiner Künste von Anderenfalls kommt es zu Fehlfunktionen oder Undichtigkeiten.
- Beim Reinigen mit Wasser die Verschlussplatte nicht durch Einwirkung von Gewalt verformen. Anderenfalls kommt es zu einer schlechten Verbindung.
 Verkratzen Sie beim Montieren oder Demontieren nicht den O-Ring. Bringen Sie den O-Ring auch nicht verdreht an. Anderenfalls kann es zu Undichtigkeiten kommer
- · Beim Anschweißen an den Cupla ist der Cupla im zerlegten Zustand zu verwenden. Das Schweißen im montierten Zustand verformt die Teile oder beschädigt den O-Ring und
- beim Anschweißen an den Cupia ist der Cupia im Zenegren Zuständ zu verwenden. Das Schweißen im montierten Zuständ verformt die Teile oder deschagen.
 Der Außendurchmesser und die Dicke des Rohrs, das mit dem Cupia verschweißt werden soll, müssen der Norm JIS G 3447 entsprechen.
 Nach dem Anschweißen an den Cupia polieren Sie bite das geschweißte Teil. (Eine Oberflächenrauhigkeit Ra ≤ 1,0 µm wird für die flüssigkeitsberührten Teile empfohlen. Die Oberflächenrauhigkehenrauhigkeit der Schweißhaht sollte Ry = 16 µm nicht überschreiten.)
 Wird das Teil nicht poliert oder wird die Oberflächenrauhigkeit größer als der empfohlene Wert, kann es zur Ausbreitung von Bakterien kommen.

- wird oas lein incir poliert oder wird one Obernacheraungkeit grober als der emproniene wert, kann es zur Aussretung von Baktenen kommen.
 Fehflunktionen durch Schweißen (direkt derorigerufen) werden nicht von der Garantie abgedeckt.
 Für den Aderendhülsentyp verwenden Sie bitte Aderendhülsenkupplungen nach IDF/ISO 2852.
 Nach der Installation des Cuplas vor dessen Gebrauch immer eine Dichtheitsprüfung durchführen.
 Wenn ein Hochtemperatur-Fluid auf den Cupla aufgetragen wird, ist beim Umgang mit dem Cupla Vorsicht geboten, da dieser ebenfalls heiß wird.
 Wenn der Cupla in einer Hochtemperaturatmosphäre verwendet wird, kann es vorkommen, dass sich der Nockenhebel nicht gleichmäßig dreht.
 diesem Fall apphizieren Sie bitte Wasser o. A. auf das Teil, an dem sich der Nockenhebel und die Lock ASSY berühren.
 Wenn Pulver auf den Cupla aufgetragen wird, kann statische Elektrizität erzeugt werden. Bitte ergreifen Sie bei Bedarf Gegenmaßnahmen.
 Wenn der Cupla über einen längerer Zeitraum annserbiksesn bleit kann es schwierin werden. In zu deren bit zu deren bit zu deren bit zu der werden in zu der werden w

- Wenn Pulver auf den Cupla aufgetragen wird, kann statische Elektrizität erzeugt werden. Bitte ergreiten Sie bei Bedarf Gegenmaßnahmen.

 Wenn der Cupla über einen längeren Zeitraum angeschlossen bleibt, kann es schwierig werden, ih zu demortieren.

 Drehen Sie in diesem Fall die Buchse und den Stecker nicht gewaltsam ab, da dies das Dichtungsmaterial beschädigen und Leckagen verursachen kann.

 Nicht trennen, während das Fluid noch unter Staudruck oder statischem Restdruck steht.

 Lassen Sie den Cupla nicht fallen. Anderenfalls kann es zu Undichtigkeiten oder Fehlfunktionen kommen.

 Bauen Sie immer ein Absperventil zwischen Druckquelle und Cupla ein.

 Keine künstlichen Stöße, Biegungen oder Spannungen anwenden. Anderenfalls kann es zu Undichtigkeiten oder Schäden kommen.

 Das direkte Anschließen von Cuplas an vibrierende oder schlagende Geräte führt zu einer verkürzten Lebensdauer.

 Nur als Schnellkupplungen für Fluidleitungen verwenden.

- Verwenden Sie Cuplas nur in Kombination mit Cuplas von Nitto Kohki

- Uberprüfen Sie Cuplas regelmäßig, Stellen Sie die Verwendung des Cuplas sofort ein, wenn Sie etwas Ungewöhnliches am Cupla feststellen.
 Entfermen Sie bei der Lagerung des Cuplas den O-Ring aus dem Stecker. Anderenfalls kann das Entfermen durch die Adsorption schwierig werden.
 Bewor Sie den Cupla verwenden, demontieren und reinigen Sie ihn in einer Weise, die Ihren Einsatzbedingungen entspricht sowie den Dichtungs- und Gehäusewerkstoff nicht

- Der O-Ring und die Lock plate ASSY sind Verschleißteile.
 Bitte tauschen Sie die Lock plate ASSY bei ca. 1.000 Verbindungen/Trennungen aus.
 Wenn die Lock plate ASSY deformiert ist, ersetzen Sie sie unabhängig
- von der Anzähl der Verbindungen und Trennungen durch eine neue.
 Die Lebensdauer des O-Rings hängt von der Betriebsumgebung und
 den Bedingungen (Druck und Temperatur usw.) ab.

Semi-Standard Cupla-Serie

Kontaktieren Sie uns separat für detaillierte Vorsichtsmaßnahmen bezüglich der Semi-Standard Cupla-Serie.

Wartung von Cuplas

O-Ring-Austauschverfahren

Der interne O-Ring ist ein Verschleißteil. Wenn der O-Ring in der Buchse z. B. durch Verschleiß oder Beschädigung fehlerhaft ist, führen Sie die folgenden Schritte aus, um ihn durch einen neuen zu ersetzen. Verwenden Sie immer Original-O-Ringe von Nitto Kohki

O-Ring-Austauschvorrichtung Zubehör für die O-Ring-Wartung PM.I-1 (Klein) Schmiermittel für O-Ringe 5 ml-Behälte GRE-M1 (Mineralfett) für NBR und FKM GRE-HC1 (Kohlenwasserstoff-Fett) für NBR und FKM PMJ-2 (Groß) GRE-S1 (Silikonfett) für NBR, FKM und EPDM

<u> Norsicht bei der Lagerung von Cuplas</u>

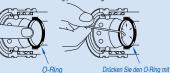
- · Lagern Sie Cuplas an einem Ort, an dem kein Staub und keine Fremdkörper eindringen. Wenn das Fluid strömt, während Staub oder Fremdkörper in den Cuplas
- Lagern Sie Cuplas in Innerräumen fern von Wasser und Fauchtigkeit.

 Lagern Sie Cuplas an einem schattigen, trockenen und gut belüfteten Ort.

 Lassen Sie Cuplas nicht fallen. Anderenfalls werden die Cuplas deformiert oder beschädigt.
- Wenn Cuplas gelagert oder über einen längeren Zeitraum nicht benutzt werden, überprüfen Sie vor dem Gebrauch das Aussehen, die Funktion und die Leistung

Cuplas sollten regelmäßig überprüft werden, um einen sicheren Betrieb zu gewährleisten und einen Leistungsabfall oder eine Fehlfunktion zu vermeiden. Wenn es eine Fehlfunktion im Cupla oder Verschleiß gibt, ersetzen Sie den Cupla bitte durch einen neuen. Sollten Sie Fragen oder Bedenken haben, wenden Sie sich an Nitto Kohki oder den Händler, bei dem Sie Ihren Cupla gekauft haben.

So entfernen Sie den O-Ring


● Verwenden Sie eine optionale O-Ring-Austauschvorrichtung, um den O-Ring zu entfernen. Achten Sie darauf, die Nut des O-Rings mit der Vorrichtung nicht zu beschädigen. Gebrauchte O-Ringe, die abgenutzt oder verschlissen sind, können mit der Vorrichtung problemlos entfernt werden.

② Nachdem Sie den O-Ring entfernt haben, wischen Sie die Nut mit einem Tuch ab. O-Ring-Austauschvorrichtung

So installieren Sie einen neuen O-Ring

 Nachdem sichergestellt ist, dass sich kein Staub und keine Fremdkörper in der Nut des O-Rings befinden, kann ein Teil des O-Rings eingeschoben und der Rest mithilfe der Vorrichtung problemlos eingedrückt werden.

2 HSP Cuplas haben einen Stützring. Setzen Sie einen O-Ring an der in der Abbildung gezeigten Stelle ein. Wenn das Verbinden/Trennen des Cuplas nach dem Austausch des O-Rings schwergängig ist, fetten Sie den O-Ring etwas ein.

Das CUPLA-Logo ist eine eingetragene Marke oder eine Marke von Nitto Kohki Co., Ltd. in Japan, den USA und/oder bestimmten anderen Ländern.

NITTO KOHKI CO., LTD.

Firmenzentrale

9-4, Nakaikegami 2-chome, Ohta-ku, Tokyo 146-8555, Japan

Tel.: +81-3-3755-1111 Fax: +81-3-3753-8791 E-Mail: overseas@nitto-kohki.co.jp

Web www.nitto-kohki.co.jp/e

Ausländische Tochtergesellschaften/Niederlassungen

NITTO KOHKI U.S.A., INC.

46 Chancellor Drive, Roselle, Illinois 60172, U.S.A. Für Cuplas

Tel.: +1-630-924-5959

Für Werkzeuge

Tel.: +1-630-924-9393

Für Pumpen

Tel.: +1-630-924-8811 www.nittokohki.com/

NITTO KOHKI EUROPE GMBH

Gottlieb-Daimler-Str. 10, 71144 Steinenbronn, Germany Tel: +49-7157-989555-0 Fax: +49-7157-989555-40

www.nitto-kohki.eu/

NITTO KOHKI EUROPE GMBH Niederlassung Großbritannien

Fax: +1-630-924-1174

Fax: +1-630-924-0303

Fax: +1-630-924-0808

Unit A5, Langham Park Industrial Estate, Maple Road, Castle Donington, Derbyshire DE74 2UT, United Kingdom Tel: +44-1332-653800 Fax: +44-1332-987273

www.nitto-kohki.eu/

NITTO KOHKI CO., LTD. Repräsentanz Bangkok

2 Jasmine Building, 22nd Floor, Soi Prasarnmitr(Sukhumvit23), Sukhumvit Road, North Klongtoey, Wattana, Bangkok 10110, Thailand Tel: +66-2612-7388

Thai www.nitto-kohki.co.jp/network/th/

Vietnamese www.nitto-kohki.co.jp/network/vi/

NITTO KOHKI CO., LTD. Verbindungsbüro Indien

14th Floor, Tower 5B, DLF Epitome, DLF Cyber City, Phase 3, Gurugram, Haryana 122002, India

Tel: +91-124-460-7701

www.nitto-kohki.co.jp/network/

NITTO KOHKI CO., LTD. Singapore Branch

18, Kaki Bukit Road 3, #02-12, Entrepreneur Business Centre, Singapore 415978

Tel: +65-6227-5360 Fax: +65-6227-0192

www.nitto-kohki.co.jp/network/

NITTO KOHKI CO., LTD. Indonesia Representative Office

Centennial Tower 35th Floor Jl. Jend. Gatot Subroto Kav. 24-25, Jakarta 12930, Indonesia

Tel: +62-21-2953-9500

www.nitto-kohki.co.jp/network/id/

NITTO KOHKI AUSTRALIA PTY LTD

77 Brandl Street, Eight Mile Plains, Queensland 4113, Australia

Tel: +61-7-3340-4600 Fax: +61-73340-4640

www.nitto-australia.com.au/

NITTO KOHKI (SHANGHAI) CO., LTD.

Room1506, Suite C, Orient International Plaza, No.85 Loushanguan Road, Shanghai 200336, China Tel: +86-21-6415-3935 Fax: +86-21-6472-6957

www.nitto-kohki.cn/

NITTO KOHKI (SHANGHAI) CO., LTD. Niederlassung Shenzhen

www.nitto-kohki.cn/

VERTRETEN DURCH